矩阵快速幂模板(pascal)

洛谷P3390

题目背景

矩阵快速幂

 

题目描述

给定n*n的矩阵A,求A^k

 

输入输出格式

输入格式:

第一行,n,k

第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素

 

输出格式:

输出A^k

共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7

 

输入输出样例

输入样例#1:
2 1
1 1
1 1
输出样例#1:
1 1
1 1

说明

n<=100, k<=10^12, |矩阵元素|<=1000

算法:矩阵快速幂

 

矩阵快速幂模板:

 1 program rrr(input,output);
 2 const
 3   cs=1000000007;
 4 var
 5   a,c,ans:array[0..110,0..110]of int64;
 6   n,i,j,k:longint;
 7   m:int64;
 8 begin
 9    assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
10    readln(n,m);
11    for i:=1 to n do for j:=1 to n do read(a[i,j]);
12    fillchar(ans,sizeof(ans),0);
13    for i:=1 to n do ans[i,i]:=1;
14    while m>0 do
15       begin
16          if m mod 2=1 then
17             begin
18                //c:=ans*a;
19                for i:=1 to n do for j:=1 to n do begin c[i,j]:=0;for k:=1 to n do c[i,j]:=(c[i,j]+ans[i,k]*a[k,j]) mod cs; end;
20                //ans:=c;
21                for i:=1 to n do for j:=1 to n do ans[i,j]:=c[i,j];
22             end;
23          //c:=a*a;
24          for i:=1 to n do for j:=1 to n do begin c[i,j]:=0;for k:=1 to n do c[i,j]:=(c[i,j]+a[i,k]*a[k,j]) mod cs; end;
25          //a:=c;
26          for i:=1 to n do for j:=1 to n do a[i,j]:=c[i,j];
27          m:=m>>1;
28       end;
29    for i:=1 to n do begin for j:=1 to n do write(ans[i,j],' ');writeln; end;
30    close(input);close(output);
31 end.

 

posted @ 2017-02-19 19:44  Klaier  阅读(326)  评论(0编辑  收藏  举报