2016 10 27 考试 dp 向量 乱搞

[TOC] #20161027考试 #####考试时间 7:50 AM to 11:15 AM

题目
考试包


据说这是一套比较正常的考卷,,,嗯,,或许吧,
jk
而且,,整个小组其他人的分数加起来也不如apt123大神多,,
最终,3道题一共30分滚粗
mo

T1:

树形dp题目,感觉我这种dp渣渣是想不出方程了,,%%%%一下apt大神,,

正解:

设dp[i][j]表示根节点为i,距离i最近的被选点的距离大于等于j时的最大节点数,dp[i][0]即为答案

转移:

设f[i][0] = a[i],表示选了a[i]后的初始状态,转移方程为:

dp[i][j] = max(dp[i][j] + dp[son[i]][max(k - j, j - i)], dp[i][max(k - j + 1, j)] + dp[son[i]][j - 1]); j = 1 -> k

dp[i][j] = max(dp[i][j], dp[i][j+1]);

考虑方程,显然设置状态时并没有考虑到同一个根的不同儿子之间的冲突情况,所以必须在转移时候加以限制。

  • 当j的值足够大时,该根节点的j层儿子之间一定不会发生矛盾,因此可以由dp[son[i]][j-1]向dp[i][j]转移

  • 当j的值比较小时,同层的子节点会发生冲突,那么就必须手动解决冲突,即将其中一个点设为k-j,以保证两个子节点之间的距离大于k

再考虑dp方程本身的含义,显然可知对于dp[i][j],随着j变小可选择的范围应逐渐增多,即如果dp[i][3] = 4,dp[i][1]最少为4,由此,再转移后再加入dp[i][j] = max(dp[i][j], dp[i][j+1])

#include <cstdio>
#include <algorithm>
#include <cstring>
using std :: max;
const int maxn = 20000 + 100;
int last[maxn], pre[maxn], other[maxn];
int f[maxn][120];
int n, k;
int a[maxn];
int tot = 0;
int x1, x2;

void add(int x, int y) {
	tot++;
	pre[tot] = last[x];
	last[x] = tot;
	other[tot] = y;
}

void dfs(int x, int from) {
	f[x][0] = a[x];
	for (int p = last[x]; p; p = pre[p]) {
		int q = other[p];
		if (q == from) continue;
		dfs(q, x);
		f[x][0] = f[x][0] + f[q][k];
		for (int j = 1; j <= k; j++) {
			f[x][j] = max(f[x][j] + f[q][max(k - j, j - 1)], f[x][max(k - j + 1, j)] + f[q][j-1]);
		}
	}
	for (int i = k-1; i >= 0; i--) f[x][i] = max(f[x][i+1], f[x][i]);
}

int main () {
	freopen("score.in", "r", stdin);
	freopen("score.out", "w", stdout);
	scanf("%d %d", &n, &k);
	for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
	for (int i = 1; i < n; i++) {
		scanf("%d %d", &x1, &x2);
		add(x1, x2);
		add(x2, x1);
	}
	dfs(1, 0);
	printf("%d", f[1][0]);
	return 0;
}

再贴上apt大犇的AC代码,代码略长但更为直观

var
    n,m,a,b,bg                 :longint;
    f                       :array[0..10010,0..105]of longint;
    pre,oth,last,q,w          :array[0..20010]of longint;
    vis                     :array[0..10010]of boolean;
    ii,i,j,k,p,r                   :longint;
    totl,ans,ret,mxs             :longint;

function max(a,b:longint):longint;
begin
    if a>b then exit(a); exit(b);
end;

procedure conn(a,b:longint);
begin
    inc(totl);
    pre[totl]:=last[a];
    last[a]:=totl;
    oth[totl]:=b;
end;

procedure bfs;
var p,cur,r,he,ta:longint;
begin
    he:=0; ta:=1; q[1]:=1; vis[1]:=true;
    while he<>ta do begin
        inc(he);
        cur:=q[he];
        p:=last[cur];
        while p>0 do begin
            r:=oth[p];
            if not vis[r] then begin
                vis[r]:=true;
                inc(ta);
                q[ta]:=r;
            end;
            p:=pre[p];
        end;
    end;
end;


begin
    assign(input,'score.in'); reset(input);
    assign(output,'score.out'); rewrite(output);

    read(n,m);
    for i:=1 to n do read(w[i]);
    for i:=1 to n-1 do begin
        read(a,b);
        conn(a,b); conn(b,a);
    end;
    bfs;

    bg:=(m>>1)+1;

    for ii:=n downto 1 do begin
        i:=q[ii];
        f[i,0]:=w[i];
        p:=last[i];
        while p>0 do begin
            r:=oth[p];
            inc(f[i,0],f[r,m]);
            p:=pre[p];
        end;

        for k:=m downto bg do begin
            f[i,k]:=f[i,k+1];
            ret:=0;
            p:=last[i];
            while p>0 do begin
                r:=oth[p];
                inc(ret,f[r,k-1]);
                p:=pre[p];
            end;
            f[i,k]:=max(f[i,k],ret);
            //if (k=3)and(i=1) then writeln('??',ret,' ',f[3,2],' ',f[i,k]);
        end;

        for k:=bg-1 downto 1 do begin
            f[i,k]:=f[i,k+1];
            ret:=0; mxs:=0;
            p:=last[i];
            while p>0 do begin
                r:=oth[p];
                inc(ret,f[r,m-k]);
                p:=pre[p];
            end;
            p:=last[i];
            while p>0 do begin
                r:=oth[p];
                f[i,k]:=max(f[i,k],ret-f[r,m-k]+f[r,k-1]);
                p:=pre[p];
            end;

            {if (k=2)and(i=1) then writeln('??',ret,' ',mxs,' ',f[2,1]);
            f[i,k]:=max(f[i,k],f[mxs,k-1]+ret-f[mxs,m-k]);  }
        end;
        f[i,0]:=max(f[i,0],f[i,1]);
    end;

    {for i:=1 to n do begin
        for j:=0 to m do begin
            write(f[i,j],' ');
        end;
        writeln;
    end;  }

    for i:=0 to m do
        ans:=max(ans,f[1,i]);

    write(ans);

    close(input);
    close(output);
end.

T2:

线性dp,状态定义和转移都比较邪,,,
考试时把题目理解成处理玉的方案数,导致前期思路错误,未能完成题目

正解:

F[i]表示到了第i天恰好第一次出现k个连续的晴天的方案数,那么要保证i-k这一天一定是雨天或者X,于是i-k+1i这一段的天气已经全部被固定了,可以得出方案数有2^(1i-k中X的个数),然后减去所有不合法的状态,对于Fj就减去F[j]2^(j+1~i-k中X的个数)(可以记一个数组t1,每次遇到X就2,每次都加上F[i]的值),(j>i-k)的就是减去F[j],对于雨天反过来做一次,最后答案是sigma(F[i]*雨天的t1[i+1])

实现:

使用numx, numw, numb记录每种天气出现的次数,为方便期间,numx, numb 从1开始,numw从n逆向开始

转移

当题设条件满足时,f[i] = 2 ^ (numx[i-k-1]) - t[i - k - 1], ts[i] = (ts[i-1]) * (1 + (当前为x) ) + f[i]。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>

const int mod = 1000000007;
const int maxn = 1000000 + 100;
int n, k;
char s[maxn];
long long pow2[maxn];
int numb[maxn], numw[maxn], numx[maxn];
long long fs[maxn], fr[maxn], ts[maxn], tr[maxn];
int main () {
	freopen("jade.in", "r", stdin);
	freopen("jade.out", "w", stdout);
	scanf("%d %d", &n, &k); 
	scanf("%s", s + 1);
	s[0] = 'X';
	s[n+1] = 'X';
	pow2[0] = 1;
	for (int i = 1; i <= n; i++) pow2[i] = (pow2[i-1] * 2) % mod;
	for (int i = 1; i <= n; i++) numb[i] = numb[i-1] + (s[i] == 'B');
	for (int i = n; i >= 1; i--) numw[i] = numw[i+1] + (s[i] == 'W');
	for (int i = 1; i <= n; i++) numx[i] = numx[i-1] + (s[i] == 'X');
	for (int i = k; i <= n; i++) {
		if ((numb[i] - numb[i-k] + numx[i] - numx[i-k]) == k && s[i-k] != 'B') 
			fs[i] = ((pow2[numx[i - k - 1]] - ts[i - k - 1]) + mod) % mod;
		ts[i] = (ts[i-1] * (1 + (s[i] == 'X')) + fs[i]) % mod;
	}
	numx[n+1] = numx[n];
	for (int i = n - k + 1; i >= 1; i--) {
		if (numw[i] - numw[i + k] + numx[i + k - 1] - numx[i - 1] == k && s[i + k] != 'W') 
			fr[i] = ((pow2[numx[n] - numx[i + k]] - tr[i + k + 1]) + mod) % mod;
		tr[i] = ( tr[i + 1] * (1 + (s[i] == 'X')) + fr[i] )  % mod;
		 
	}
	long long ans = 0;
	//for (int i = 1; i <= n; i++) printf("%I64d ", ts[i]);
	for (int i = 1; i <= n; i++) ans = ((ans + fs[i] * tr[i + 1] % mod) + mod) % mod;
	printf("%I64d", ans);
	return 0;
}

具体细节有待进一步讨论
具体细节有待进一步讨论
具体细节有待进一步讨论
具体细节有待进一步讨论
rrd

T3:

正在写。。。

posted @ 2016-10-27 21:19  CtsNevermore  阅读(182)  评论(0编辑  收藏  举报