[转]c++矩阵运算库Eigen
原文地址:http://www.cnblogs.com/goingupeveryday/p/5699053.html
c++矩阵运算库Eigen
Eigen 的简介和下载安装
最近因为要写机械臂的运动学控制程序,因此难免就要在C++中进行矩阵运算。然而C++本身不支持矩阵运算,Qt库中的矩阵运算能力也相当有限,因此考虑寻求矩阵运算库Eigen的帮助。
Eigen是一个C++线性运算的模板库:他可以用来完成矩阵,向量,数值解等相关的运算。(Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.)
Eigen库下载: http://eigen.tuxfamily.org/index.php?title=Main_Page
Eigen库的使用相当方便,将压缩包中的Eigen文件夹拷贝到项目目录下,直接包含其中的头文件即可使用,省去了使用Cmake进行编译的烦恼。
Eigen官网有快速入门的参考文档:http://eigen.tuxfamily.org/dox/group__QuickRefPage.html
Eigen简单上手使用
要实现相应的功能只需要包含头相应的头文件即可:
Core |
#include <Eigen/Core>
|
Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation |
Geometry |
#include <Eigen/Geometry>
|
Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis) |
LU |
#include <Eigen/LU>
|
Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU) |
Cholesky |
#include <Eigen/Cholesky>
|
LLT and LDLT Cholesky factorization with solver |
Householder |
#include <Eigen/Householder>
|
Householder transformations; this module is used by several linear algebra modules |
SVD |
#include <Eigen/SVD>
|
SVD decomposition with least-squares solver (JacobiSVD) |
QR |
#include <Eigen/QR>
|
QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR) |
Eigenvalues |
#include <Eigen/Eigenvalues>
|
Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver,ComplexEigenSolver) |
Sparse |
#include <Eigen/Sparse>
|
Sparse matrix storage and related basic linear algebra (SparseMatrix, DynamicSparseMatrix,SparseVector) |
#include <Eigen/Dense>
|
Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files | |
#include <Eigen/Eigen>
|
Includes Dense and Sparse header files (the whole Eigen library) |
基本的矩阵运算只需要包含Dense即可
基本的数据类型:Array, matrix and vector
声明:
#include<Eigen/Dense> ... //1D objects Vector4d v4; Vector2f v1(x, y); Array3i v2(x, y, z); Vector4d v3(x, y, z, w); VectorXf v5; // empty object ArrayXf v6(size); //2D objects atrix4f m1; MatrixXf m5; // empty object MatrixXf m6(nb_rows, nb_columns);
赋值:
// Vector3f v1; v1 << x, y, z; ArrayXf v2(4); v2 << 1, 2, 3, 4; // Matrix3f m1; m1 << 1, 2, 3, 4, 5, 6, 7, 8, 9;
int rows=5, cols=5; MatrixXf m(rows,cols); m << (Matrix3f() << 1, 2, 3, 4, 5, 6, 7, 8, 9).finished(), MatrixXf::Zero(3,cols-3), MatrixXf::Zero(rows-3,3), MatrixXf::Identity(rows-3,cols-3); cout << m; //对应的输出: 1 2 3 0 0 4 5 6 0 0 7 8 9 0 0 0 0 0 1 0 0 0 0 0 1
Resize矩阵:
// vector.resize(size); vector.resizeLike(other_vector); vector.conservativeResize(size); // matrix.resize(nb_rows, nb_cols); matrix.resize(Eigen::NoChange, nb_cols); matrix.resize(nb_rows, Eigen::NoChange); matrix.resizeLike(other_matrix); matrix.conservativeResize(nb_rows, nb_cols);
元素读取:
vector(i); vector[i]; matrix(i,j);
矩阵的预定义:
//vector x x.setZero(); x.setOnes(); x.setConstant(value); x.setRandom(); x.setLinSpaced(size, low, high); VectorXf::Unit(4,1) == Vector4f(0,1,0,0) == Vector4f::UnitY() //matrix x x.setZero(rows, cols); x.setOnes(rows, cols); x.setConstant(rows, cols, value); x.setRandom(rows, cols); x.setIdentity();//单位矩阵 x.setIdentity(rows, cols);
映射操作,可以将c语言类型的数组映射为矩阵或向量:
(注意:
1.映射只适用于对一维数组进行操作,如果希望将二维数组映射为对应的矩阵,可以借助"mat.row(i)=Map<Vector> v(data[i],n)"进行循环来实现,其中data为二维数组名,n为数组第一维的维度。
2.应设置之后数组名和矩阵或向量名其实指向同一个地址,只是名字和用法不同,另外,对其中的任何一个进行修改都会修改另外一个)
//连续映射 float data[] = {1,2,3,4}; Map<Vector3f> v1(data); // uses v1 as a Vector3f object Map<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object Map<Array22f> m1(data); // uses m1 as a Array22f object Map<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object //间隔映射 float data[] = {1,2,3,4,5,6,7,8,9}; Map<VectorXf,0,InnerStride<2> > v1(data,3); // = [1,3,5] Map<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // = [1,4,7] Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // both lines |1,4,7| Map<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // are equal to: |2,5,8|
算术运算:
add subtract |
mat3 = mat1 + mat2; mat3 += mat1;
mat3 = mat1 - mat2; mat3 -= mat1;
|
scalar product |
mat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1;
mat3 = mat1 / s1; mat3 /= s1;
|
matrix/vector products * |
col2 = mat1 * col1;
row2 = row1 * mat1; row1 *= mat1;
mat3 = mat1 * mat2; mat3 *= mat1;
|
transposition adjoint * |
mat1 = mat2.transpose(); mat1.transposeInPlace();
mat1 = mat2.adjoint(); mat1.adjointInPlace();
|
dot product inner product * |
scalar = vec1.dot(vec2);
scalar = col1.adjoint() * col2;
scalar = (col1.adjoint() * col2).value();
|
outer product * |
mat = col1 * col2.transpose();
|
norm normalization * |
scalar = vec1.norm(); scalar = vec1.squaredNorm()
vec2 = vec1.normalized(); vec1.normalize(); // inplace
|
cross product * |
#include <Eigen/Geometry>
vec3 = vec1.cross(vec2);
|
Coefficient-wise & Array operators
Coefficient-wise operators for matrices and vectors:
Matrix API * | Via Array conversions |
---|---|
mat1.cwiseMin(mat2)
mat1.cwiseMax(mat2)
mat1.cwiseAbs2()
mat1.cwiseAbs()
mat1.cwiseSqrt()
mat1.cwiseProduct(mat2)
mat1.cwiseQuotient(mat2)
|
mat1.array().min(mat2.array())
mat1.array().max(mat2.array())
mat1.array().abs2()
mat1.array().abs()
mat1.array().sqrt()
mat1.array() * mat2.array()
mat1.array() / mat2.array()
|
Arithmetic operators |
array1 * array2 array1 / array2 array1 *= array2 array1 /= array2
array1 + scalar array1 - scalar array1 += scalar array1 -= scalar
|
Comparisons |
array1 < array2 array1 > array2 array1 < scalar array1 > scalar
array1 <= array2 array1 >= array2 array1 <= scalar array1 >= scalar
array1 == array2 array1 != array2 array1 == scalar array1 != scalar
|
Trigo, power, and misc functions and the STL variants |
array1.min(array2)
array1.max(array2)
array1.abs2()
array1.abs() abs(array1)
array1.sqrt() sqrt(array1)
array1.log() log(array1)
array1.exp() exp(array1)
array1.pow(exponent) pow(array1,exponent)
array1.square()
array1.cube()
array1.inverse()
array1.sin() sin(array1)
array1.cos() cos(array1)
array1.tan() tan(array1)
array1.asin() asin(array1)
array1.acos() acos(array1)
|
Reductions
Eigen provides several reduction methods such as: minCoeff() , maxCoeff() , sum() , prod() , trace() *, norm()*, squaredNorm() *, all() , and any() . All reduction operations can be done matrix-wise, column-wise or row-wise. Usage example:
5 3 1
mat = 2 7 8
9 4 6
|
mat.minCoeff();
|
1
|
mat.colwise().minCoeff();
|
2 3 1
|
|
mat.rowwise().minCoeff();
|
1
2
4
|
Typical use cases of all() and any():
//Typical use cases of all() and any(): if((array1 > 0).all()) ... // if all coefficients of array1 are greater than 0 ... if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ...
Sub-matrices
Read-write access to a column or a row of a matrix (or array):
Read-write access to sub-vectors:
Default versions | Optimized versions when the size is known at compile time | |
---|---|---|
vec1.head(n)
|
vec1.head<n>()
|
the first n coeffs |
vec1.tail(n)
|
vec1.tail<n>()
|
the last n coeffs |
vec1.segment(pos,n)
|
vec1.segment<n>(pos)
|
the n coeffs in the range [ pos : pos + n - 1] |
Read-write access to sub-matrices: |
||
mat1.block(i,j,rows,cols)
|
mat1.block<rows,cols>(i,j)
|
the rows x cols sub-matrix starting from position ( i ,j ) |
mat1.topLeftCorner(rows,cols)
mat1.topRightCorner(rows,cols)
mat1.bottomLeftCorner(rows,cols)
mat1.bottomRightCorner(rows,cols)
|
mat1.topLeftCorner<rows,cols>()
mat1.topRightCorner<rows,cols>()
mat1.bottomLeftCorner<rows,cols>()
mat1.bottomRightCorner<rows,cols>()
|
the rows x cols sub-matrix taken in one of the four corners |
mat1.topRows(rows)
mat1.bottomRows(rows)
mat1.leftCols(cols)
mat1.rightCols(cols)
|
mat1.topRows<rows>()
mat1.bottomRows<rows>()
mat1.leftCols<cols>()
mat1.rightCols<cols>()
|
specialized versions of block() when the block fit two corners |
Miscellaneous operations
Reverse
Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(),VectorwiseOp::reverse()).
Replicate
Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(),VectorwiseOp::replicate())
Diagonal, Triangular, and Self-adjoint matrices
(matrix world *)
Diagonal matrices
Operation | Code |
---|---|
view a vector as a diagonal matrix |
mat1 = vec1.asDiagonal();
|
Declare a diagonal matrix |
DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
diag1.diagonal() = vector;
|
Access the diagonal and super/sub diagonals of a matrix as a vector (read/write) |
vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal
vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal
vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal
vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal
vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal
|
Optimized products and inverse |
mat3 = scalar * diag1 * mat1;
mat3 += scalar * mat1 * vec1.asDiagonal();
mat3 = vec1.asDiagonal().inverse() * mat1
mat3 = mat1 * diag1.inverse()
|
Triangular views
TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information.
- Note
- The .triangularView() template member function requires the
template
keyword if it is used on an object of a type that depends on a template parameter; see The template and typename keywords in C++ for details.
Operation | Code |
---|---|
Reference to a triangular with optional unit or null diagonal (read/write): |
m.triangularView<Xxx>()
Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper,UnitLower |
Writing to a specific triangular part: (only the referenced triangular part is evaluated) |
m1.triangularView<Eigen::Lower>() = m2 + m3
|
Conversion to a dense matrix setting the opposite triangular part to zero: |
m2 = m1.triangularView<Eigen::UnitUpper>()
|
Products: |
m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2
m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>()
|
Solving linear equations: |
L1.triangularView<Eigen::UnitLower>().solveInPlace(M2)
L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3)
U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)
|
Symmetric/selfadjoint views
Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be used to store other information.
- Note
- The .selfadjointView() template member function requires the
template
keyword if it is used on an object of a type that depends on a template parameter; see The template and typename keywords in C++ for details.
Operation | Code |
---|---|
Conversion to a dense matrix: |
m2 = m.selfadjointView<Eigen::Lower>();
|
Product with another general matrix or vector: |
m3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3;
m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();
|
Rank 1 and rank K update: |
M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1);
M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1);
|
Rank 2 update: ( ) |
M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s);
|
Solving linear equations: ( ) |
// via a standard Cholesky factorization
m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2);
// via a Cholesky factorization with pivoting
m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2);
|
更多内容请关注我的博客:http://markma.tk/