Leetcode 第 211 场周赛

暴力

class Solution {
public:
    int maxLengthBetweenEqualCharacters(string s) {
        map<char, int> mp;
        int ans = -1;
        for(int i=1; i<=s.size(); i++){
            if(mp[s[i-1]]){
                ans = max(ans, i-mp[s[i-1]]-1);
            }else{
                mp[s[i-1]]=i;
            }
        }
        return ans;
    }
};

直接bfs模拟就完事了

class Solution {
public:
    string findLexSmallestString(string s, int a, int b) {
        string ans = "";
        set<string> se;
        queue<string> que;
        se.insert(s);
        que.push(s);
        string temp;
        while(!que.empty()){
            ans = que.front();
            temp = ans;
            que.pop();
            while(true){
                ans = temp;
                for(int i=1; i<s.size(); i+=2){
                    ans[i] = '0'+((ans[i]-'0'+a)%10);
                }
                if(se.find(ans)!=se.end())
                    break;
                se.insert(ans);
                que.push(ans);
            }
            s = temp;
           for(int i=1; i*b<s.size(); i++){
                s = temp;
                reverse(s.begin(), s.begin()+b*i);
                reverse(s.begin()+b*i, s.end());
                reverse(s.begin(), s.end());
                if(se.find(s)==se.end()){
                    se.insert(s);
                    que.push(s);
                }else
                    break;
           }
        }
        return *se.begin();
    }
};

对年龄和分数排序
然后对分数跑Dp,复杂度\(n^2\)

using LL=long long;

class Solution {
public:
    int bestTeamScore(vector<int>& scores, vector<int>& ages) {
        int n=ages.size();
        vector<pair<int, int>> a(scores.size());
        for(int i=0; i<n; i++){
            a[i].first = ages[i];
            a[i].second = scores[i];
        }
        
        sort(a.begin(), a.end());
        LL ans = 0;
        vector<LL> dp(n+10, 0);
        for(int i=1; i<=n; i++){
            dp[i]=a[i-1].second;
            for(int j=0; j<i; j++){
               if(j&&a[j-1].second<=a[i-1].second)
                   dp[i]=max(dp[i], dp[j]+a[i-1].second);
            }
            ans = max(ans, dp[i]);
        }
        return ans;
    }
};

首先想到的是并查集维护图的连通性
但是由于暴力计算两个数的gcd的复杂度是\(n^2\)会TLE
于是转变思路,枚举每一个大于阈值的数作为因子产生的联通效果
根据级数求和 \(\sum_{threshold+1}^{n} \frac{n}{i}\)
可知复杂度约为\(O(nlogn)\)可以通过

class Solution {
public:
    vector<int> fa;
    int find(int x){
        return fa[x]==0? x: fa[x]=find(fa[x]);
    }
    vector<bool> areConnected(int n, int threshold, vector<vector<int>>& queries) {
        vector<bool> ans(queries.size());
        fa = vector<int>(n+1, 0);
        int g;
        int fa1;
        int fa2;
        for(int i=threshold+1; i<=n; i++){
            for(int j=2; j*i<=n; j++){
                fa1 = find(i);
                fa2 = find(i*j);
                if(fa1!=fa2)
                    fa[fa1]=fa2;
            }
        }
        int cnt=0;
        for(auto e:queries){
            if(find(e[0])==find(e[1]))
                ans[cnt++]=1;
            else
                ans[cnt++]=0;
        }
        return ans;
    }
};
posted @ 2020-10-21 09:28  CrosseaLL  阅读(80)  评论(0编辑  收藏  举报