73. 矩阵置零

73. 矩阵置零

2021年3月21日每日一题

O(1)额外空间写法

简单理解一下

​ 首先我们对于矩阵内所有\(\sum_{i=0}^{m}{\sum_{j=1}^{n}}0\),记录到第0行和第0列上

​ 那么,我们只需要对于\(\sum_{i=1}^{m}{\sum_{j=1}^{n}}\),只需要根据第0行和第0列来置0即可

​ 无论第0行和第0列原先是否是0,其对应的列/行,必定变为0

​ 那么,我们考虑第0行对应的行

​ 我们可以发现,它有\(m[0][0]\)来控制,只要是0,那么整行都是0。

​ 我们再考虑第0列对应的列

​ 我们可以发现,遍历每一行会对每一行的第0列进行更改,我们需要在遍历前,记录原先第\(i\)行第0列的是否为0,只要有一个\([i][0]\)是0,那么显然第0列全为0

代码

class Solution {
  public:
    void setZeroes(vector<vector<int>> &matrix) {
        int n, m;
        m = matrix.size();
        n = matrix[0].size();
        bool rs=0;
        for (int i = 0; i < m; i++) {
            //每一行头部原本是否有0
            //包含原本的[0,0]
            if(matrix[i][0]==0)
             rs=1;
            //判断每列里是否有0
            //第0行只对[0,0]有影响
            for (int j = 1; j < n; j++)
                if (matrix[i][j] == 0)
                    matrix[i][0] = matrix[0][j] = 0;
        }
        for(int i=1;i<m;i++)
            for(int j=1;j<n;j++)
                if(matrix[i][0]==0||matrix[0][j]==0)
                    matrix[i][j]=0;
        if(matrix[0][0]==0)
            for(int i=0;i<n;i++)
                matrix[0][i]=0;
        if(rs)
            for(int i=0;i<m;i++)
                matrix[i][0]=0;
    }
};
posted @ 2023-11-30 15:39  CrossAutomaton  阅读(5)  评论(0编辑  收藏  举报