IMU | 惯导模块指标参数与标定
组合定位模块初始化
组合定位过程中对IMU/GNSS等模块进行初始化,主要针对质量参数进行估计
【停车判断】
- 空旷环境:
可以依赖GPS、轮速辅助做停车判断,动态GPS测速精度达到mm级别,通过GPS、轮速判断停车比单纯依靠IMU判断要准确; - 遮挡环境:
如果有轮速可以辅助做停车判断,则优先使用轮速做判断;
【初始化策略】
- 静态初始化:
指的是进行姿态(水平角)、位置、速度、航向初始值获取的过程;
IMU初始化:除了上面提到的姿态(水平角)的初始化外,还有固定零偏、噪声的估计(这两个值在车辆非静止模式下比较难测出)
- 动态初始化:
指的是跑车过程中通过GPS信号对IMU模块的相对安装位置进行估计,包括安装偏差角等,完成自对准操作;
【初始化现状】
车辆运行过程中,重启设备,保持车辆动态不停车,车辆不能完成静态初始化;
【存在问题】
IMU未实现静态初始化,则不能有效的对IMU固定零偏、噪声进行估计,所以该状态在无轮速的遮挡环境下容易出现推算异常的问题(出错概率完全取决于IMU的可靠程度)
初始化方案和用户的实际使用场景、客户的需求相关,追求便利的一定程度上会损失估计精度;
IMU模块参数定义代码参考
/**
* @GNSS_INS.h
* @berif: GNSS_INS variable define.
*/
#ifndef _GNSS_INS_H
#define _GNSS_INS_H
/* It's valid in 2037 years. */
typedef struct { /* time struct */
long int time; /* time (s) expressed by standard time_t */
double sec; /* fraction of second under 1 s */
} gtime_t;
namespace libGNSS_INS
{
typedef struct
{
gtime_t time; //second
double latitude;//deg
double longitude;//deg
double altitude;//m
double heading;//deg
double std_latitude;
double std_longitude;
double std_altitude;
int position_status;//fixed float single...
int heading_status;
}GNSS_Data;
typedef struct
{
gtime_t time;
double gyro[3]; //deg/s
double accel[3];//m/s2
}IMU_Data;
typedef struct
{
gtime_t time;
double latitude; //deg
double longitude;//deg
double altitude;//m
double heading;
double roll;//deg
double pitch;
double yaw;
double std_latitude;
double std_longitude;
double std_altitude;
double std_heading;
//define the velocity or not.
double std_roll;
double std_pitch;
double std_yaw;
int position_status;//fixed float single...
int heading_status;
}GNSSINS_Data;
typedef struct
{
//Algorithm define some error status
int accel_error;
int gyro_error;
int time_error;
int arm_error;
}Error_Flag;
typedef struct
{
double X;
double Y;
double Z;
double estimate_X;
double estimate_Y;
double estimate_Z;
//define the rotation installation deviation angle.
//define the vehicle arm lever.
//define output position coordinate.
}Antenna_Arm;
typedef struct
{
//Output Rate HZ
double Output_Rate;
//Output Sample Rate (max)
double OutputSample_Rate;
//Accel. Range
double Accel_Range;
//Accel. In-Run Bias Stability (typ) g
double AccelBias_Stability;
//Accelerometer Velocity Random Walk (typ) (m/s)/rthr
double AccelVelocity_RandomWalk[3];
//Noise Density (typ) g/rtHz
double AccelNoise_Density;
//Accelerometer Output Total Noise (typ) g
double Accel_TotalNoise;
//0G Offset Tempco (typ) ppm/掳C
double Accel_Tempco;
//Accelerometer Non-Linearity (typ) % FSR
double Accel_NonLinearity;
//Accelerometer Axis to Axis Alignment (typ)
double AccelAxistoAxis_Alignment;
//Calibrated Temp Range
double Accel_CalibratedTemperatureRange;
//Gyro Input Range +/- (min) deg/s
double GyroInput_Range;
//Gyro In-Run Bias Stability (typ) deg/hr
double GyroBias_Stability[3];
//Gyro Angular Random Walk (typ) deg/rthr
double GyroAngular_RandomWalk[3];
//Gyro Noise Density (typ) (deg/s)/rtHz
double GyroNoise_Density;
//Gyro Linear G (typ) (deg/s)/g
double GyroLinear_G;
//Gyro Axis to Axis Alignment (typ) deg
double GyroAxistoAxis_Alignment;
//Gyro Bias Repeatability
double GyroBias_Repeatability;
}IMU_Model;
class GNSS_INS
{
public:
GNSS_INS();
~GNSS_INS() = default;
int SetIMUPar(IMU_Model *imu_par);
void SetAntenna_Arm(Antenna_Arm arm);
/**/
int Calibration(GNSS_Data *gnss_data, IMU_Data *imu_data, Error_Flag* flag);
int Init(GNSS_Data *gnss_data, IMU_Data *imu_data, Error_Flag* flag);
void GetAntenna_Arm(Antenna_Arm* arm);
// GNSS_Data 1/5HZ
// IMU_Data 100/200 HZ
// GNSSINS_Data depend on IMU_Data
int Integration(GNSS_Data *gnss_data, IMU_Data *imu_data, GNSSINS_Data *integrate_result,Error_Flag* flag);
private:
//arm Parameters
Antenna_Arm antenna_arm_;
//IMU_Model
IMU_Model imumode_;
//Algorithm add some variable
double last_time_,cur_time_,dt_;
};
}
#endif
/**
* @GNSS_INS.c
* @berif: GNSS_INS function define.
*/
#include <string.h>
#include "GNSS_INS.h"
namespace libGNSS_INS
{
int GNSS_INS::Init(IMU_Model *init_par)
{
memcpy((unsigned char *)(&imumode_),init_par,sizeof(IMU_Model));
return 0;
}
void GNSS_INS::GetAntenna_Arm(Antenna_Arm* arm)
{
memcpy((unsigned char *)(arm),&Antenna_Arm_,sizeof(Antenna_Arm));
}
void GNSS_INS::SetAntenna_Arm(Antenna_Arm arm)
{
memcpy((unsigned char *)(&Antenna_Arm_),&arm,sizeof(Antenna_Arm));
}
void GNSS_INS::SetCalibrationFlag(bool flag)
{
calibrationFlag_ = flag;
}
int Integration(GNSS_Data *gnss_data, IMU_Data *imu_data, GNSSINS_Data *integrate_result,Error_Flag* flag)
{
}
}