[HEOI2012]采花
第一眼以为是树套树qwq
然而n,m<=1e6
记上一个与i颜色相同的位置为nxt[i]
考虑i和nxt[i]会对那些询问产生贡献。
发现当右端点R>=i时,
左端点只要满足nxt[nxt[i]]<l<=nxt[i]就会得到i的贡献。
由此
把询问按照R排序
扫描每一个点,对区间 ( nxt[nxt[i]] , nxt[i] ] 加一,查询时查询L位置的值即可。
实现可以用树状数组维护差分序列实现。
#include<iostream>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define N 4400000
#define eps 1e-7
#define inf 1e9+7
#define ll long long
using namespace std;
inline int read()
{
char ch=0;
int x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
int n,k,m,l[N],f[N],ans[N];
struct node
{
int l,r,id;
}p[N];
bool cmp(node a,node b)
{
return a.r<b.r;
}
int s[N];
void add(int x,int num)
{
for(;x<=n;x+=((x)&(-x)))s[x]+=num;
}
int query(int x)
{
int ans=0;
for(;x;x-=((x)&(-x)))ans+=s[x];
return ans;
}
int main()
{
int x,i,j;
n=read();k=read();m=read();
for(i=1;i<=n;i++)
{
x=read();
l[i]=f[x];f[x]=i;
}
for(i=1;i<=m;i++)
{
p[i].id=i;
p[i].l=read();
p[i].r=read();
}
sort(p+1,p+m+1,cmp);
for(i=1,j=0;i<=m;i++)
{
while(j<n&&j<p[i].r)
{
j++;
if(!l[j])continue;
add(l[l[j]]+1,+1);
add(l[j]+1,-1);
}
ans[p[i].id]=query(p[i].l);
}
for(i=1;i<=m;i++)printf("%d\n",ans[i]);
return 0;
}