BZOJ 1407 exgcd
枚举 山洞个数,每次n^2 枚举两个野人之间是否会发生冲突.
相当于求p[i]*x+c[i] = p[j]*x+c[j] mod m (天数)
----------> (p[i]-p[j])*x-m*y = c[j]-c[i] .. exgcd 求解.
#include <iostream> #include <cstring> #include <algorithm> #include <stdio.h> #define MAXN 17 using std::max; int n,p[MAXN],c[MAXN],l[MAXN],mx; template<typename _t> inline _t read(){ _t x=0,f=1; char ch=getchar(); for(;ch>'9'||ch<'0';ch=getchar())if(ch=='-')f=-f; for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+(ch^48); return x*f; } inline int gcd(int x,int y){return y==0?x:gcd(y,x%y);} void gcd(int a,int b,int &x,int &y){ if(b==0){x=1;y=0;return;} gcd(b,a%b,x,y); int t=x;x=y;y=t-a/b*y; } inline bool Judge(int tot){ // (p[i]-p[j])*x -my = c[j]-c[i]; for(register int i=1;i<=n;i++){ for(register int j=i+1;j<=n;j++){ int A,B,C,x,y; A = p[i]-p[j],B=c[j]-c[i],C=tot; int t = gcd(A,C); if(B%t==0){ A/=t;B/=t;C/=t; gcd(A,C,x,y); if(C<0)C=-C; x = ((B*x)%C+C)%C; if(!x)x+=C; if(x<=l[i]&&x<=l[j])return 0; } } } return 1; } int main(){ n=read<int>(); for(int i=1;i<=n;i++){ c[i]=read<int>(), p[i]=read<int>(), l[i]=read<int>(); mx=max(mx,c[i]); } while(!Judge(mx++));mx--; printf("%d\n",mx); }