COGS 1473 O(N*logN) 高精乘 FFT
题意: 求A*B, A <= 10^150000
万进制亿进制走吧,放弃吧...
正解fft 模板么,随便搞搞就好了...
#include <iostream> #include <cstring> #include <algorithm> #include <stdio.h> #include <math.h> using std::swap; #define MAXN 530010 const double PI = acos(-1.0); char s1[MAXN],s2[MAXN]; int rev[MAXN],N,len,len1,len2,cnt,Ans[MAXN]; template<typename _t> inline _t read(){ _t x=0,f=1; char ch=getchar(); for(;ch>'9'||ch<'0';ch=getchar())if(ch=='-')f=-f; for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+(ch^48); return x*f; } struct Complex{ double x,y; inline Complex operator + (const Complex & a){return (Complex){x+a.x,y+a.y};} inline Complex operator - (const Complex & a){return (Complex){x-a.x,y-a.y};} inline Complex operator * (const Complex & a){return (Complex){x*a.x-y*a.y,x*a.y+y*a.x};} }a[MAXN],b[MAXN],c[MAXN]; inline void fft(Complex *a,int type){ Complex wn,w,t; for(int i=0;i<N;i++)if(i<rev[i])swap(a[i],a[rev[i]]); for(int k=2;k<=N;k<<=1){ wn = (Complex){cos(type*2*PI/k),sin(type*PI*2/k)}; for(int j=0;j<N;j+=k){ w = (Complex){1,0}; for(int i=0;i<(k>>1);i++,w=w*wn) t=a[i+j+(k>>1)]*w,a[i+j+(k>>1)]=a[i+j]-t,a[i+j]=a[i+j]+t; } } if(type==-1) for(int i=0;i<N;i++) a[i].x/=N; } void FFT(Complex *a,Complex *b,int *Ans,int tot){ for(N=1;N<(tot<<1);len++,N<<=1); for(int i=0;i<N;i++) { if(i&1)rev[i]=(rev[i>>1]>>1)|(N>>1); else rev[i]=rev[i>>1]>>1; } fft(a,1);fft(b,1); for(int i=0;i<N;i++) c[i]=a[i]*b[i];fft(c,-1); for(int i=0;i<N;i++) Ans[i]=round(c[i].x); } int main(){ scanf("%s%s",s1,s2); len1=strlen(s1);len2=strlen(s2); cnt = len1>len2?len1:len2; for(int i=0;i<len1;i++)a[i].x=s1[len1-i-1]-48; for(int i=0;i<len2;i++)b[i].x=s2[len2-i-1]-48; FFT(a,b,Ans,cnt); for(int i=0;i<N;i++) { Ans[i+1] += Ans[i] / 10; Ans[i] %= 10; } len = len1+len2; while(!Ans[len]&&len>=1)--len; for(int i=len;i>=0;i--)printf("%c",Ans[i]+'0'); }