Andrew Ng -- What is Ai? the second week

 

 

 

 

# 机器学习的关键步骤:  

1. 收集数据

2. 训练模型; 直到模型的足够的好,不断进行优化

3. 部署模型

 

 

 # 数据科学关键步骤:

1. 收集数据

2. 分析数据

3. 建议假设/行动

 

 

 

 

# 数据科学采用优化生产线;机器学习采用的则是自动视觉检查

 

 

 

# 制造业,在数据科学上常用到的A/B测试;机器学习上是定制产品推荐;

 

 

 

 

 

 

 

# Cross functional team  交叉功能团队;往往一个Ai项目需要Ai专业领域的人才和团队,也需要专业领域的人才和团队交叉合作进行

 

# 头脑风暴框架,思考自动化任务,自动工作

商业价值的主要驱动因素是什么?

你生意中的主要痛点是什么

 

 

 

 

 

 # Ai 既需要大数据,也不要因为没有大数据而直接放弃某个项目,因为有些项目不一定在没有大量数据(小部分数据集)的前提下就完全不能开展

 

# 技术调研 & 商业调研

 

 

 

# 除了进行技术考察和业务之外,还需要进行道德层面的考量,确保无论你在做什么。让人性和社会变得更好。

 

 

 

 

 # 不要跟火车冲刺赛跑;

因为即使你可以在短期内冲刺得更快, 最终火车也会赶上你, 并撞到试图在火车前冲刺的人。因此,当有大量建立的行业标准解决方案时,你可能最好只采用行业标准或其他人的平台,而不是试图在内部重新建造一个全新的东西。我们都生活在一个资源有限,时间有限,数据有限, 工程资源有限的世界里, 所以我希望你能把这些资源集中在我们最独特的项目上,以此让你的公司带来最大的收益

# 机器学习项目可以外包,也可以自建。外包可以更快找到合适的人才,并加速项目的实施;

# 数据科学项目一般都是企业内部自建,因为数据科学需要接触非常多的企业敏感数据,才能得到更真实的结果

# 如果一些事,已经有了行业标准,不要尝试“重复造轮子”或者想要去颠覆,而是应该遵守或者购买这种标准

 

 

 

 

 

 # 寻找一个合格的准确率,而不是一定要100%因为有以下因素:

机器学习的局限性

不足够的数据

混乱的数据(如错误的标记)

模棱两可的标签

 

# 相关深度学习框架简介,参考:https://www.cnblogs.com/Cong0ks/p/15433858.html

 

 

posted @   Cong0ks  阅读(46)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· 单线程的Redis速度为什么快?
· 展开说说关于C#中ORM框架的用法!
· Pantheons:用 TypeScript 打造主流大模型对话的一站式集成库
点击右上角即可分享
微信分享提示