武汉大学2007年数学分析试题解答
武汉大学数分答案2007
一、(此题共6小题,每题6分,共36分)
1:
解:由于1≤(n!)1n2≤n√n
而\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{n}=1由迫敛性知:\underset{n\to +\infty }{\mathop{\lim }}\,{{(n!)}^{\frac{1}{{{n}^{2}}}}}=1
2:
解:由于\sqrt{{{x}^{2}}+1}+\sqrt{{{x}^{2}}-1}-2x=\frac{1}{\sqrt{{{x}^{2}}+1}+x}-\frac{1}{\sqrt{{{x}^{2}}-1}+x}=\frac{\sqrt{{{x}^{2}}-1}-\sqrt{{{x}^{2}}+1}}{(\sqrt{{{x}^{2}}+1}+x)(\sqrt{{{x}^{2}}-1}+x)}
=\frac{-2}{(\sqrt{{{x}^{2}}+1}+x)(\sqrt{{{x}^{2}}-1}+x)(\sqrt{{{x}^{2}}-1}+\sqrt{{{x}^{2}}+1})}
则\underset{x\to +\infty }{\mathop{\lim }}\,{{x}^{\alpha }}(\sqrt{{{x}^{2}}+1}+\sqrt{{{x}^{2}}-1}-2x)=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{-2{{x}^{\alpha -3}}}{(\sqrt{{{x}^{2}}+1}+x)(\sqrt{{{x}^{2}}-1}+x)(\sqrt{{{x}^{2}}-1}+\sqrt{{{x}^{2}}+1})}
于是
\beta =\left\{\begin{array}{ll} 0, & \hbox{$\alpha<3$;} \\ - \frac{1}{4}, & \hbox{$\alpha=3$;} \\ + \infty, & \hbox{$\alpha>3$.} \end{array} \right.
3:
解:利用高阶导数的公式可知:
{{y}^{(50)}}(x)=C_{50}^{0}\cdot {{x}^{2}}\cdot {{(\cos 3x)}^{(50)}}+C_{50}^{1}\cdot 2x\cdot {{(\cos 3x)}^{(49)}}+C_{50}^{2}\cdot 2\cdot {{(\cos 3x)}^{(48)}}
={{3}^{48}}[(2450-9{{x}^{2}})\cos 3x-300x\sin 3x]
4:
解:由于ds=\sqrt{1+{{({{y}^{'}})}^{2}}}dx=\sqrt{1+{{(\frac{-2x}{1-{{x}^{2}}})}^{2}}}dx=\frac{1+{{x}^{2}}}{1-{{x}^{2}}}dx=(\frac{2}{1-{{x}^{2}}}-1)dx
s=\int_{0}^{\frac{1}{2}}{(\frac{2}{1-{{x}^{2}}}}-1)dx=[\ln \frac{1+x}{1-x}-x]|_{0}^{\frac{1}{2}}=\ln 3-\frac{1}{2}
5:
解:\int\limits_{0}^{2}{dx\int\limits_{x}^{2}{{{e}^{-{{y}^{2}}}}}dy}=\int_{0}^{2}{dy\int_{0}^{y}{{{e}^{-{{y}^{2}}}}}}dx=\int_{0}^{2}{y{{e}^{-{{y}^{2}}}}}dy=\frac{1-{{e}^{-4}}}{2}
6:
解:不妨设{{a}_{n}}=\frac{({{n}^{2}}-1)}{{{2}^{n}}}
由于R=\underset{n\to +\infty }{\mathop{\lim }}\,\frac{{{a}_{n}}}{{{a}_{n+1}}}=\underset{n\to +\infty }{\mathop{\lim }}\,\frac{{{n}^{2}}-1}{{{(n+1)}^{2}}-1}\cdot 2=2
且\sum\limits_{n=0}^{+\infty }{({{n}^{2}}}-1)和\sum\limits_{n=0}^{+\infty }{{{(-1)}^{n}}({{n}^{2}}}-1)均发散
从而该级数的收敛区间为(-2,2)
设S(x)=\sum\limits_{n=0}^{+\infty }{\frac{({{n}^{2}}-1)}{{{2}^{n}}}{{x}^{n}}},x\in (-2,2)
则S(x)=\sum\limits_{n=0}^{+\infty }{(n-1)(n+1){{(\frac{x}{2})}^{n}}}
先积分一次后两边同除\frac{x}{2}可得:
\sum\limits_{n=0}^{+\infty }{\frac{({{n}^{2}}-1)}{{{2}^{n}}}{{x}^{n}}}=\frac{4(3x-2)}{{{(2-x)}^{3}}},x\in (-2,2)
二、解:设切点为({{x}_{0}},{{y}_{0}},{{z}_{0}}),设f(x,y,z)=\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}+\frac{{{z}^{2}}}{{{c}^{2}}}
从而{{f}_{x}}({{x}_{0}},{{y}_{0}},{{z}_{0}})=\frac{2{{x}_{0}}}{{{a}^{2}}},{{f}_{y}}({{x}_{0}},{{y}_{0}},{{z}_{0}})=\frac{2{{y}_{0}}}{{{b}^{2}}},{{f}_{z}}({{x}_{0}},{{y}_{0}},{{z}_{0}})=\frac{2{{z}_{0}}}{{{c}^{2}}}
从而\pi 的表达式为\frac{2{{x}_{0}}}{{{a}^{2}}}(x-{{x}_{0}})+\frac{2{{y}_{0}}}{{{b}^{2}}}(y-{{y}_{0}})+\frac{2{{z}_{0}}}{{{c}^{2}}}(z-{{z}_{0}})=0
且\frac{x_{0}^{2}}{{{a}^{2}}}+\frac{y_{0}^{2}}{{{b}^{2}}}+\frac{z_{0}^{2}}{{{c}^{2}}}=1,代入化简得:\frac{{{x}_{0}}}{{{a}^{2}}}x+\frac{{{y}_{0}}}{{{b}^{2}}}y+\frac{{{z}_{0}}}{{{c}^{2}}}z=1
于是\pi 在第一象限的部分与三个坐标的坐标分别为
(\frac{{{a}^{2}}}{{{x}_{0}}},0,0),(0,\frac{{{b}^{2}}}{{{y}_{0}}},0),(0,0,\frac{{{c}^{2}}}{{{z}_{0}}}),可知{{x}_{0}},{{y}_{0}},{{z}_{0}}>0
于是V=\frac{1}{6}\cdot \frac{{{a}^{2}}}{{{x}_{0}}}\cdot \frac{{{b}^{2}}}{{{y}_{0}}}\cdot \frac{{{c}^{2}}}{{{z}_{0}}},且\frac{x_{0}^{2}}{{{a}^{2}}}+\frac{y_{0}^{2}}{{{b}^{2}}}+\frac{z_{0}^{2}}{{{c}^{2}}}=1
由广义均值不等式知:\frac{x_{0}^{2}}{{{a}^{2}}}+\frac{y_{0}^{2}}{{{b}^{2}}}+\frac{z_{0}^{2}}{{{c}^{2}}}\ge 3\sqrt[3]{\frac{x_{0}^{2}}{{{a}^{2}}}\cdot \frac{y_{0}^{2}}{{{b}^{2}}}\cdot \frac{z_{0}^{2}}{{{c}^{2}}}}
当且仅当{{x}_{0}}=\frac{\sqrt{3}}{3}a,{{y}_{0}}=\frac{\sqrt{3}}{3}b,{{z}_{0}}=\frac{\sqrt{3}}{3}c等号成立
于是当\pi 的方程为\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=\sqrt{3}时,{{V}_{\min }}=\frac{\sqrt{3}}{2}abc
三、解:由于
\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\cdot \frac{\partial v}{\partial x}=\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}
\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\cdot \frac{\partial v}{\partial y}=-\frac{1}{\sqrt{y}}\frac{\partial z}{\partial u}+\frac{1}{\sqrt{y}}\frac{\partial z}{\partial v}
\frac{{{\partial }^{2}}z}{\partial {{x}^{2}}}=[\frac{\partial (\frac{\partial z}{\partial u})}{\partial u}\cdot \frac{\partial u}{\partial x}+\frac{\partial (\frac{\partial z}{\partial u})}{\partial v}\cdot \frac{\partial v}{\partial x}]+[\frac{\partial (\frac{\partial z}{\partial v})}{\partial u}\cdot \frac{\partial u}{\partial x}+\frac{\partial (\frac{\partial z}{\partial v})}{\partial v}\cdot \frac{\partial v}{\partial x}]=\frac{{{\partial }^{2}}z}{\partial {{u}^{2}}}+2\frac{{{\partial }^{2}}z}{\partial u\partial v}+\frac{{{\partial }^{2}}z}{\partial {{v}^{2}}}
\frac{{{\partial }^{2}}z}{\partial {{y}^{2}}}=\frac{1}{2y\sqrt{y}}\frac{\partial z}{\partial u}-\frac{1}{\sqrt{y}}[\frac{\partial (\frac{\partial z}{\partial u})}{\partial u}\cdot \frac{\partial u}{\partial x}+\frac{\partial (\frac{\partial z}{\partial u})}{\partial v}\cdot \frac{\partial v}{\partial x}]-\frac{1}{2y\sqrt{y}}\frac{\partial z}{\partial u}+\frac{1}{\sqrt{y}}[\frac{\partial (\frac{\partial z}{\partial v})}{\partial u}\cdot \frac{\partial u}{\partial x}+\frac{\partial (\frac{\partial z}{\partial v})}{\partial v}\cdot \frac{\partial v}{\partial x}]=\frac{1}{y}(\frac{{{\partial }^{2}}z}{\partial {{u}^{2}}}-2\frac{{{\partial }^{2}}z}{\partial u\partial v}+\frac{{{\partial }^{2}}z}{\partial {{v}^{2}}})+\frac{1}{2y\sqrt{y}}(\frac{\partial z}{\partial u}-\frac{\partial z}{\partial u})
代入方程,得到:4\frac{{{\partial }^{2}}z}{\partial u\partial v}=0\Rightarrow \frac{{{\partial }^{2}}z}{\partial u\partial v}=0
四、解:
(1)不妨设G(x,y,z)=F(x-y,y-xz),则当x\ne 0时,{{G}_{z}}=-x{{F}_{\eta }}(x-y,y-xz)\ne 0
于是由隐函数定理可知:方程F(x-y,y-xz)=0在x\ne 0附近唯一确定隐函数
z=z(x,y)
(2)对方程两边求导可得:
\left\{\begin{array}{ll} {F_\xi } - {F_\eta }(z + x{z_x}) = 0 \\ - {F_\xi } + {F_\eta }(1 - x{z_y}) = 0 \\ - {F_{\xi \xi }} + {F_{\xi \eta }}(1 - x{z_y} + z + x{z_x}) + {F_{\eta \eta }}({x^2}{z_x}{z_y} - z - x{z_x} + xz{z_y}) - {F_\eta }({z_y} + x{z_{xy}}) = 0 \end{array} \right.
解得
\left\{\begin{array}{ll} {z_x} = \frac{{{F_\xi } - z{F_\eta }}}{{x{F_\eta }}} \\ {z_y} = \frac{{{F_\eta } - {F_\xi }}}{{x{F_\eta }}} \\ {z_{xy}} = \frac{{ - xF_\eta ^2{F_{\xi \xi }} + 2x{F_\xi }{F_\eta }{F_{\xi \eta }} - xF_\xi ^2{F_{\eta \eta }} - F_\eta ^2 + {F_\xi }{F_\eta }}}{{{x^2}F_\eta ^3}} \end{array} \right.
五、证明:由(3)可知:
\exists M>0,使得\left| {{b}_{n}}(x) \right|\le M,x\in [a,b],n\in {{N}^{*}}
由(2)可知:
对\forall \varepsilon >0,\exists N>0,对\forall n.m>N,x\in [a,b],都有\left| \sum\limits_{k=n+1}^{m}{{{a}_{k}}(x)} \right|<\frac{\varepsilon }{M}
于是对\forall \varepsilon >0,\exists N>0,对\forall n.m>N,x\in [a,b],有
\sum\limits_{k=n+1}^{m}{\left| {{a}_{k}}(x){{b}_{k}}(x) \right|\le M\sum\limits_{k=n+1}^{m}{{{a}_{k}}(x)}}<\varepsilon
由柯西收敛准则可知:\sum\limits_{n=1}^{+\infty }{|{{a}_{n}}(x)}{{b}_{n}}(x)|在[a,b]上一致收敛
六、证明:令G(x)=\int_{1}^{x}{{{t}^{2}}f(t)dt},由微分中值定理可知:
\exists \xi \in (1,2)\subset [1,3],使得G(2)-G(1)=G'(\xi )\Rightarrow \int_{1}^{2}{{{x}^{2}}f(x)dx=}{{\xi }^{2}}f(\xi )
令F(x)={{x}^{2}}f(x),x\in [1,3]
由题可知:F(1)=F(\xi )=F(3)
于是由罗尔中值定理可知:存在1<{{\xi }_{1}}<\xi <{{\xi }_{2}}<3,使得2f(x)+xf'(x)=0
于是存在{{\xi }_{\text{1}}},{{\xi }_{2}}\in (1,3),{{\xi }_{1}}\ne {{\xi }_{2}},满足恒等式2f(x)+xf'(x)=0。
(注意,此题也可以利用积分中值定理,但是需要讨论)
七、证明:
(1)先证明f'(x)无第一类间断点
证明:反证法,若f'(x)在x=a处是第一类间断点,则f'(x)在x=a处存在左右极限
由中值定理可知,f'(a)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\frac{f(x)-f(a)}{x-a}=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f'(\xi ),x<\xi <a
于是当x\to {{a}^{-}}时\xi \to {{a}^{-}}
则f'(a)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f'(\xi )=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f'(x)
即f'(x)在x=a处左连续
同理可证:f'(x)在x=a处右连续
于是f'(x)在x=a处连续矛盾
从而f'(x)无第一类间断点
(2)单调函数的间断点只可能为第一类跳跃的
证明:若f(x)在{{U}^{0}}({{x}_{0}})上为单调增函数,取{{U}^{0}}({{x}_{0}})\subset I,\exists {{x}_{1}},{{x}_{2}}\in I,使得{{x}_{1}}<x<{{x}_{2}}
则f(x)在{{U}^{0}}({{x}_{0}})上为有界函数,于是有
f({{x}_{0}}+0)=\underset{x\in {{U}^{0}}({{x}_{0}})}{\mathop{\inf }}\,f(x),f({{x}_{0}}-0)=\underset{x\in {{U}^{0}}({{x}_{0}})}{\mathop{\sup }}\,f(x)
即f(x)在{{x}_{0}}的左、右极限均存在
因此若{{x}_{0}}为f(x)的间断点,必为f(x)的第一类间断点
若f(x)为单调减函数,只需令F(x)=-f(x),同理可证
于是单调函数的间断点只可能为第一类跳跃的
由(1)(2)可知,单调的导函数一定是连续的,于是f'(x)在[a,b]上连续
则f'(x)在[a,b]上有界,即存在M>0,对一切x\in [a,b],都有\left| f'(x) \right|\le M
于是对任意a\le x,y\le b,由积分中值定理可知:
存在\xi \in (a,b),使得\left| f(y)-f(x) \right|=\left| f'(\xi ) \right|\left| y-x \right|\le M\left| y-x \right|
于是令L=M,即证
八、解:记\Sigma 所围的立体为\Omega ,由散度定理和球坐标变换可知:
设x=r\sin \varphi \cos \theta ,y=r\sin \varphi \sin \theta ,z=r\cos \varphi ,0\le \theta \le 2\pi ,0\le \varphi \le \frac{\pi }{4},a\le r\le 2a
于是I=\iint\limits_{\Sigma }{xydydz+yzdzdx+z\sqrt{{{x}^{2}}+{{y}^{2}}}}dxdy=\iiint_{\Omega }{(y+z+\sqrt{{{x}^{2}}+{{y}^{2}}})dxdydz}
\text{=}\int_{0}^{2\pi }{d\theta \int_{0}^{\frac{\pi }{4}}{d\varphi \int_{a}^{2a}{(r\sin \theta \sin \varphi +r\cos \theta +r\sin \theta }}}){{r}^{2}}\sin \theta dr
=\frac{3\pi {{a}^{4}}}{2}\int_{0}^{\frac{\pi }{4}}{(\cos \theta \sin \theta +{{\sin }^{2}}\theta )d\theta =\frac{3{{\pi }^{2}}{{a}^{4}}}{16}}
九、证明:由题知,对任意的n\in {{N}^{*}},\left| {{a}_{n}} \right|\le \frac{M}{{{n}^{\alpha }}},\left| {{b}_{n}} \right|\le \frac{M}{{{n}^{\alpha }}}
且当\alpha >1时,\frac{{{a}_{0}}}{2}+\sum\limits_{n=1}^{+\infty }{(\left| {{a}_{n}} \right|+\left| {{b}_{n}} \right|)}<+\infty
于是由M判别法可知,\frac{{{a}_{0}}}{2}+\sum\limits_{n=1}^{+\infty }{({{a}_{n}}\cos nx+{{b}_{n}}\sin nx)}一致收敛,进一步可知,其和函数连续
当\alpha >2时,\frac{{{a}_{0}}}{2}+\sum\limits_{n=1}^{+\infty }{(n\left| {{a}_{n}} \right|+n\left| {{b}_{n}} \right|)}<+\infty
于是由M判别法可知,\frac{{{a}_{0}}}{2}+\sum\limits_{n=1}^{+\infty }{(-n{{a}_{n}}\sin nx+n{{b}_{n}}\cos nx)}一致收敛,进一步可知,其和函数有有连续的导函数
十、证明:证明:由f(x)的连续性知,存在M>1,使得对\forall x\in \left[ 0,1 \right]有\left| f(x) \right|\le M,又由\frac{2}{\pi }\int_{0}^{+\infty }{\frac{1}{{{y}^{2}}+1}dy=1}知,对\forall \varepsilon >0,
\exists N,使得当n>N.时,有
\left| \frac{2}{\pi }\int_{n}^{+\infty }{\frac{dy}{{{y}^{2}}+1}} \right|<\frac{\varepsilon }{3(M+\left| f(0) \right|)}
再由f(x)的连续性知,对上述\varepsilon >0,\exists \delta >0(不妨设\delta <1),使得对\forall x\in {{U}_{+}}(0,\delta ),
有\left| f(x)-f(0) \right|<\frac{\varepsilon }{3} 令N=\left[ \frac{{{N}_{1}}}{\delta } \right] ,则当n>N时,有
\left| \frac{2}{\pi }\int_{0}^{1}{\frac{n}{{{n}^{2}}{{x}^{2}}+1}f(x)dx}-f(0) \right|=\left| \frac{2}{\pi }\int_{0}^{n}{\frac{f(\frac{y}{n})-f(0)}{{{y}^{2}}+1}dy-\frac{2}{\pi }\int_{n}^{+\infty }{\frac{f(0)dy}{{{y}^{2}}+1}}} \right|
\le \frac{2}{\pi }\int_{0}^{{{N}_{1}}}{\frac{\left| f(\frac{y}{n})-f(0) \right|}{{{y}^{2}}+1}dy+}\frac{2}{\pi }\int_{{{N}_{1}}}^{n}{\frac{\left| f(\frac{y}{n})-f(0) \right|}{{{y}^{2}}+1}dy+}\frac{2}{\pi }\left| f(0) \right|\int_{n}^{+\infty }{\frac{dy}{{{y}^{2}}+1}}
<\frac{\varepsilon }{3}\frac{2}{\pi }\int_{0}^{+\infty }{\frac{dy}{{{y}^{2}}+1}+(M+\left| f(0) \right|)\frac{2}{\pi }\int_{{{N}_{1}}}^{+\infty }{\frac{dy}{{{y}^{2}}+1}+\left| f(0) \right|\frac{2}{\pi }\int_{n}^{+\infty }{\frac{dy}{{{y}^{2}}+1}}}}
<\frac{\varepsilon }{3}+\frac{\varepsilon }{3}+\frac{\varepsilon }{3}=\varepsilon
由此知,\underset{n\to +\infty }{\mathop{\lim }}\,\frac{2}{\pi }\int_{0}^{1}{\frac{n}{{{n}^{2}}{{x}^{2}}+1}f(x)dx}=f(0)
于是\underset{n\to +\infty }{\mathop{\lim }}\,\int\limits_{0}^{1}{\frac{n}{1+{{n}^{2}}{{x}^{2}}}}f(x)dx=\frac{\pi }{2}f(0)
.
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何在 .NET 中 使用 ANTLR4
· 后端思维之高并发处理方案
· 理解Rust引用及其生命周期标识(下)
· 从二进制到误差:逐行拆解C语言浮点运算中的4008175468544之谜
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 想让你多爱自己一些的开源计时器
· Cursor预测程序员行业倒计时:CTO应做好50%裁员计划
· 大模型 Token 究竟是啥:图解大模型Token
· 如何在 .NET 中 使用 ANTLR4
· 用99元买的服务器搭一套CI/CD系统