武汉大学2008年数学分析试题解答
武汉大学2008年数学分析试题解答
一:计算题
1.lim
2.原极限=\underset{x\to 0}{\mathop{\lim }}\,{{x}^{1-n}}\left( 1-\sqrt{1+x} \right)\cdots \left( 1-\sqrt[n]{1+x} \right)
=\underset{x\to 0}{\mathop{\lim }}\,{{x}^{1-n}}{{\left( -1 \right)}^{n-1}}\frac{1}{n!}{{x}^{n-1}}=\frac{{{\left( -1 \right)}^{n-1}}}{n!}
3.\frac{dy}{dx}=\frac{\cos t}{3{{t}^{2}}+1}
\frac{{{d}^{2}}y}{d{{x}^{2}}}=\frac{\frac{-\sin t\left( 3{{t}^{2}}+1 \right)-6t\cos t}{{{\left( 3{{t}^{2}}+1 \right)}^{2}}}}{3{{t}^{2}}+1}=-\frac{\sin t\left( 3{{t}^{2}}+1 \right)+6t\cos t}{{{\left( 3{{t}^{2}}+1 \right)}^{3}}}
4.{{f}^{n}}\left( x \right)={{\left( {{a}^{2}}+{{b}^{2}} \right)}^{\frac{n}{2}}}{{e}^{ax}}\sin \left( bx+n\arctan \frac{b}{a} \right)
5.\underset{n\to +\infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{{{n}^{2}}}{\frac{n}{{{n}^{2}}+{{k}^{2}}}}=\underset{n\to +\infty }{\mathop{\lim }}\,\frac{1}{n}\sum\limits_{k=1}^{{{n}^{2}}}{\frac{1}{1+{{\left( \frac{k}{n} \right)}^{2}}}}=\underset{n\to +\infty }{\mathop{\lim }}\,\int_{0}^{n}{\frac{dx}{1+{{x}^{2}}}}=\int_{0}^{+\infty }{\frac{dx}{1+{{x}^{2}}}}=\frac{\pi }{2}
二:证明:
由于\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt{x}{f}'\left( x \right)=a,可知:\exists M>0,\delta >0\left( <<1 \right),\forall x\in \left( 0,\delta \right],均有
\left| \sqrt{x}{f}'\left( x \right) \right|\le M
故对\forall {{x}_{1}},{{x}_{2}}\in \left( 0,\delta \right], 则存在{{x}_{3}}\in \left( 0,\delta \right] ,有
\frac{f\left( {{x}_{1}} \right)-f\left( {{x}_{2}} \right)}{\sqrt{{{x}_{1}}}-\sqrt{{{x}_{2}}}}=2\sqrt{{{x}_{3}}}{f}'\left( {{x}_{3}} \right)
即
\left| f\left( {{x}_{1}} \right)-f\left( {{x}_{2}} \right) \right|\le 2M\left| \sqrt{{{x}_{1}}}-\sqrt{{{x}_{2}}} \right|\le 2M\sqrt{\left| {{x}_{1}}-{{x}_{2}} \right|}
从而可知,对\forall \varepsilon >0\left( {{\left( \frac{\varepsilon }{2M} \right)}^{2}}<<\delta \right),\forall {{x}_{1}},{{x}_{2}}\in \left( 0,\delta \right] ,且\left| {{x}_{1}}-{{x}_{2}} \right|<\left( \frac{\varepsilon }{2M} \right) 有
\left| f\left( {{x}_{1}} \right)-f\left( {{x}_{2}} \right) \right|<\varepsilon
故f\left( x \right) 在\left( 0,\delta \right] 上一致收敛
而f(x)在[\delta ,1]上连续,则f\left( x \right) 在[\delta ,1]上一致收敛
于是f\left( x \right) 在(0,1]上一致收敛
三:证明:由分析可知\exists {{x}_{0}}\in \left[ a,b \right],M>0,\forall x\in \left[ a,b \right],0<f\left( x \right)\le f\left( {{x}_{0}} \right)=M,
从而知{{\left( \int_{a}^{b}{{{\left( f\left( x \right) \right)}^{n}}dx} \right)}^{\frac{1}{n}}}\le M{{\left( b-a \right)}^{\frac{1}{n}}}不妨设{{x}_{0}}\in \left( a,b \right),则
\forall \varepsilon >0,\exists \delta >0,\left( {{x}_{0}}-\delta ,{{x}_{0}}+\delta \right)\subseteq \left[ a,b \right],且\forall x\in \left( {{x}_{0}}-\delta ,{{x}_{0}}+\delta \right),f\left( x \right)\ge M-\varepsilon ,从而
{{\left( \int_{a}^{b}{{{\left( f\left( x \right) \right)}^{n}}dx} \right)}^{\frac{1}{n}}}\ge {{\left( \int_{{{x}_{0}}-\delta }^{{{x}_{0}}+\delta }{{{\left( f\left( x \right) \right)}^{n}}dx} \right)}^{\frac{1}{n}}}\ge {{\left( 2\delta \right)}^{\frac{1}{n}}}\left( M-\varepsilon \right),从而
M-\varepsilon \le \underset{n\to +\infty }{\mathop{\lim }}\,{{\left( \int_{a}^{b}{{{\left( f\left( x \right) \right)}^{n}}dx} \right)}^{\frac{1}{n}}}\le M,由于\varepsilon 任意性,即\underset{n\to +\infty }{\mathop{\lim }}\,{{\left( \int_{a}^{b}{{{\left( f\left( x \right) \right)}^{n}}dx} \right)}^{\frac{1}{n}}}=M,即\underset{n\to +\infty }{\mathop{\lim }}\,{{\left( \int_{a}^{b}{{{\left( f\left( x \right) \right)}^{n}}dx} \right)}^{\frac{1}{n}}}=\underset{x\in \left[ a,b \right]}{\mathop{\max }}\,f\left( x \right)
四:证明:
1.由于\left| {{e}^{-n}}\cos {{n}^{2}}x \right|\le \left| {{e}^{-n}} \right|,而级数\sum\limits_{n=0}^{\infty }{{{e}^{-n}}}收敛,从而可知函数项级数\sum\limits_{n=0}^{\infty }{{{e}^{-n}}}\cos \left( {{n}^{2}}x \right)在\left( -\infty ,+\infty \right)上一致收敛
2.\forall k\in {{\mathbb{N}}^{*}},\sum\limits_{n=0}^{\infty }{{{e}^{-n}}}\frac{{{d}^{k}}\left( \cos \left( {{n}^{2}}x \right) \right)}{d{{x}^{k}}}=\sum\limits_{n=0}^{\infty }{{{e}^{-n}}}{{n}^{2k}}\cos \left( {{n}^{2}}x+\frac{n\pi }{2} \right),
而\left| {{e}^{-n}}{{n}^{2k}}\cos \left( {{n}^{2}}x+\frac{n\pi }{2} \right) \right|\le {{e}^{-n}}{{n}^{2k}},而级数\sum\limits_{n=0}^{\infty }{{{e}^{-n}}}{{n}^{2k}}收敛,从而可知函数项级数\sum\limits_{n=0}^{\infty }{{{e}^{-n}}}\frac{{{d}^{k}}\left( \cos \left( {{n}^{2}}x \right) \right)}{d{{x}^{k}}}在\left( -\infty ,+\infty \right)上一致收敛,由于k的任意性
\sum\limits_{n=0}^{\infty }{{{e}^{-n}}}\frac{{{d}^{k}}\left( \cos \left( {{n}^{2}}x \right) \right)}{d{{x}^{k}}}\left( k=1,2,\cdots \right)在\left( -\infty ,+\infty \right)上一致收敛
3.由分析可知{{f}^{\left( 2k \right)}}\left( 0 \right)={{\left( -1 \right)}^{k}}\sum\limits_{n=0}^{\infty }{{{e}^{-n}}{{n}^{4k}}},{{f}^{\left( 2k+1 \right)}}\left( 0 \right)=0,从而可知f\left( x \right)在x=0的
Taylor级数为\sum\limits_{k=0}^{\infty }{\frac{{{\left( -1 \right)}^{k}}\sum\limits_{n=0}^{\infty }{{{e}^{-n}}{{n}^{4k}}}}{\left( 2k \right)!}}{{x}^{2k}}
4.由于
\sqrt[2k]{\left| \frac{{{\left( -1 \right)}^{k}}\sum\limits_{n=0}^{\infty }{{{e}^{-n}}{{n}^{4k}}}}{\left( 2k \right)!} \right|}\ge \sqrt[2k]{\left| \frac{{{e}^{-2k}}{{\left( 2k \right)}^{4k}}}{\left( 2k \right)!} \right|}\ge \frac{2k}{e}\to +\infty 从而可知f\left( x \right)在
x=0的Taylor级数为\sum\limits_{k=0}^{\infty }{\frac{{{\left( -1 \right)}^{k}}\sum\limits_{n=0}^{\infty }{{{e}^{-n}}{{n}^{4k}}}}{\left( 2k \right)!}}{{x}^{2k}}
五、证明:由于f(x)在[a,b]上连续,则f(x)在[a,b]上一致连续
于是对\forall \varepsilon >0,\exists \delta >0,对任意的x',x''\in [a,b],当\left| x'-x'' \right|<\delta 时,有
\left| f(x')-f(x'') \right|<\frac{\varepsilon }{2}
于是将[a,b]区间k等分,a={{x}_{0}}<{{x}_{1}}<\cdots <{{x}_{k}}=b,使得\frac{b-a}{k}<\delta
且\Delta {{x}_{i}}={{x}_{i}}-{{x}_{i-1}}=\frac{b-a}{k},i=1,2,\cdots ,k于是有\left| f({{x}_{i}})-f({{x}_{i-1}}) \right|<\frac{\varepsilon }{2}
同时对任意的x\in [{{x}_{i-1}},{{x}_{i}}],有\left| f(x)-f({{x}_{i}}) \right|<\frac{\varepsilon }{2},\left| f(x)-f({{x}_{i\text{-}1}}) \right|<\frac{\varepsilon }{2}
又由于\underset{n\to \infty }{\mathop{\lim }}\,{{f}_{n}}({{x}_{i}})=f({{x}_{i}})\Rightarrow \exists {{N}_{i}}>0,当n>{{N}_{i}}时有\left| {{f}_{n}}({{x}_{i}})-f({{x}_{i}}) \right|<\frac{\varepsilon }{2},其中i=1,2,\cdots ,k
于是令N=\max \{{{N}_{1}},{{N}_{2}},\cdots ,{{N}_{k}}\},对任意的x\in [{{x}_{i-1}},{{x}_{i}}],当n>N时有
\left| {{f}_{n}}({{x}_{i-1}})-f(x) \right|\le \left| {{f}_{n}}({{x}_{i-1}})-f({{x}_{i-1}}) \right|+\left| f({{x}_{i-1}})-f(x) \right|<\varepsilon
\left| {{f}_{n}}({{x}_{i}})-f(x) \right|\le \left| {{f}_{n}}({{x}_{i}})-f({{x}_{i}}) \right|+\left| f({{x}_{i}})-f(x) \right|<\varepsilon
对任意的x\in [a,b],必有x\in [{{x}_{i-1}},{{x}_{i}}],i=1,2,\cdots ,k,当n>N时,有f(x)的单调性知:\left| {{f}_{n}}(x)-f(x) \right|\le \max \{\left| {{f}_{n}}({{x}_{i-1}})-f(x) \right|\left| {{f}_{n}}({{x}_{i}})-f(x) \right|\text{ }\!\!\}\!\!\text{ }\varepsilon
于是\{{{f}_{n}}(x)\}在[a,b]上一致收敛于f(x)
六:解:1.由分析可知
\frac{\partial w}{\partial x}=y\frac{\partial F}{\partial u},\frac{\partial w}{\partial y}=x\frac{\partial F}{\partial u}+z\frac{\partial F}{\partial v},\frac{\partial w}{\partial z}=y\frac{\partial F}{\partial v}
显然有
x\frac{\partial w}{\partial x}+z\frac{\partial w}{\partial z}=y\frac{\partial w}{\partial y}
2.如果F\left( {{u}_{1}},\cdots ,{{u}_{m}} \right)是具有连续偏导数的多元函数,则原偏微分方程的完全积分为
w=F\left( {{x}_{1}}y,\cdots ,{{x}_{m}}y \right)
七:证明:
{F}'\left( t \right)=2t\int_{{{t}^{2}}-t}^{{{t}^{2}}+t}{\sin \left( {{t}^{4}}-{{t}^{2}}+{{y}^{2}} \right)dy}+\int_{0}^{{{t}^{2}}}{\left( \sin \left[ {{\left( x+t \right)}^{2}}+{{x}^{2}}-{{t}^{2}} \right]-\sin \left[ {{\left( x-t \right)}^{2}}+{{x}^{2}}-{{t}^{2}} \right] \right)dx-}
\int_{0}^{{{t}^{2}}}{dx}\int_{x-t}^{x+t}{2t\cos \left( {{x}^{2}}+{{y}^{2}}-{{t}^{2}} \right)}dy
八:解:由分析可知
I=\iiint\limits_{V}{\left( 2z+\sqrt{{{x}^{2}}+{{y}^{2}}} \right)}dxdydz
=\int_{0}^{\frac{\pi }{4}}{d\theta }\int_{a}^{2a}{d\rho }\int_{0}^{2\pi }{\left( \rho \sin \theta +\rho \cos \theta \right)}{{\rho }^{2}}\sin \theta d\varphi
=2\pi \frac{{{\left( 2a \right)}^{4}}-{{a}^{4}}}{4}\left( \frac{\pi }{8}-\frac{1}{4}+\frac{1}{4} \right)=\frac{15{{\pi }^{2}}{{a}^{4}}}{16}
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 对象命名为何需要避免'-er'和'-or'后缀
· SQL Server如何跟踪自动统计信息更新?
· AI与.NET技术实操系列:使用Catalyst进行自然语言处理
· 分享一个我遇到过的“量子力学”级别的BUG。
· Linux系列:如何调试 malloc 的底层源码
· JDK 24 发布,新特性解读!
· C# 中比较实用的关键字,基础高频面试题!
· .NET 10 Preview 2 增强了 Blazor 和.NET MAUI
· Ollama系列05:Ollama API 使用指南
· 为什么AI教师难以实现