武汉大学2009年数学分析试题解答
武汉大学2009年数学分析试题解答
一.1.解lim
=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=2}^{n}{\frac{2}{k\left( k+1 \right)}} =2\underset{n\to \infty }{\mathop{\lim }}\,\left( \frac{1}{2}-\frac{1}{n+1} \right)=1;
2.解 \underset{x\to 0}{\mathop{\lim }}\,\frac{\int_{0}^{x}{\left( x-t \right)\sin {{t}^{2}}dt}}{x\int_{0}^{x}{\sin {{t}^{2}}dt}}
=\underset{x\to 0}{\mathop{\lim }}\,\frac{x\int_{0}^{x}{\sin {{t}^{2}}dt}-\int_{0}^{x}{t\sin {{t}^{2}}dt}}{x\int_{0}^{x}{\sin {{t}^{2}}dt}}
=\underset{x\to 0}{\mathop{\lim }}\,\frac{\int_{0}^{x}{\sin {{t}^{2}}dt}}{\int_{0}^{x}{\sin {{t}^{2}}dt}+x\sin {{x}^{2}}}
=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{\sin {{x}^{2}}+\sin {{x}^{2}}+2{{x}^{2}}\cos {{x}^{2}}}
=\underset{x\to 0}{\mathop{\lim }}\,\frac{\frac{\sin {{x}^{2}}}{{{x}^{2}}}}{\frac{2\sin {{x}^{2}}}{{{x}^{2}}}+2\cos {{x}^{2}}}=\frac{1}{4};
3.解 因为\sin t=\sum\limits_{n=0}^{\infty }{\frac{{{\left( -1 \right)}^{n}}}{\left( 2n+1 \right)!}{{t}^{2n+1}}},
F\left( x \right)=\frac{1}{x}\int_{0}^{x}{\frac{\sin t}{t}dt}=\frac{1}{x}\int_{0}^{x}{\sum\limits_{n=0}^{\infty }{\frac{{{\left( -1 \right)}^{n}}}{\left( 2n+1 \right)!}{{t}^{2n}}}dt}
=\frac{1}{x}\sum\limits_{n=0}^{\infty }{\frac{{{\left( -1 \right)}^{n}}}{\left( 2n+1 \right)!}\frac{1}{\left( 2n+1 \right)}{{x}^{2n+1}}}
=\sum\limits_{n=0}^{\infty }{\frac{{{\left( -1 \right)}^{n}}}{{{\left( 2n+1 \right)}^{2}}\left( 2n \right)!}{{x}^{2n}}},
于是{{F}^{\left( 2n \right)}}\left( 0 \right)=\frac{{{\left( -1 \right)}^{n}}}{{{\left( 2n+1 \right)}^{2}}},{{F}^{\left( 2n-1 \right)}}\left( 0 \right)=0,
所以{{F}^{\left( 4 \right)}}\left( 0 \right)=\frac{1}{25},{{F}^{\left( 9 \right)}}\left( 0 \right)=0.
4. \frac{\partial z}{\partial x}=-\frac{\left( yz+xyz \right){{e}^{x+y+z}}}{\left( xy+xyz \right){{e}^{x+y+z}}}=-\frac{z\left( 1+x \right)}{x\left( 1+z \right)}=-\frac{1+\frac{1}{x}}{1+\frac{1}{z}},\frac{\partial z}{\partial y}=-\frac{1+\frac{1}{y}}{1+\frac{1}{z}};
\frac{{{\partial }^{2}}z}{\partial {{x}^{2}}}=\frac{\frac{1}{{{x}^{2}}}\left( 1+\frac{1}{z} \right)-\frac{{{z}_{x}}}{{{z}^{2}}}\left( 1+\frac{1}{x} \right)}{{{\left( 1+\frac{1}{z} \right)}^{2}}}=\frac{z\left[ {{\left( 1+z \right)}^{2}}+{{\left( 1+x \right)}^{2}} \right]}{{{x}^{2}}{{\left( 1+z \right)}^{3}}};
\frac{{{\partial }^{2}}z}{\partial x\partial y}=\frac{\frac{{{z}_{y}}}{{{z}^{2}}}\left( 1+\frac{1}{x} \right)}{{{\left( 1+\frac{1}{z} \right)}^{2}}}=\frac{z\left( 1+x \right)\left( 1+y \right)}{xy{{\left( 1+z \right)}^{3}}}.
5.解 \iint\limits_{D}{\ln \frac{{{x}^{3}}}{y}dxdy}=\int_{1}^{2}{dx\int_{1}^{x}{3\ln xdy}}-\int_{1}^{2}{dy\int_{y}^{2}{\ln ydx}}
=3\int_{1}^{2}{\left( x-1 \right)\ln xdx}-\int_{1}^{2}{\left( 2-y \right)\ln ydy}
=\int_{1}^{2}{\left( 4x-5 \right)\ln xdx}
=\int_{1}^{2}{{{\left( 2{{x}^{2}}-5x \right)}^{\prime }}\ln xdx}
=\left. \left[ \left( 2{{x}^{2}}-5x \right)\ln x-\left( {{x}^{2}}-5x \right) \right] \right|_{1}^{2}
=-2\ln 2+2.
二.证明:对于每一个x\in \left[ 0,1 \right] ,由于\left\{ {{I}_{u}} \right\}覆盖了\left[ 0,1 \right] ,
存在{{I}_{{{u}_{x}}}}\in \left\{ {{I}_{u}} \right\},使得x\in {{I}_{{{u}_{x}}}},
又由{{I}_{{{u}_{x}}}}是开区间,存在{{\delta }_{x}}>0,
使得x\in U\left( x,{{\delta }_{x}} \right)\subset U\left( x,2{{\delta }_{x}} \right)\subset {{I}_{{{u}_{x}}}},
显然开集族\left\{ U\left( x,{{\delta }_{x}} \right):x\in \left[ 0,1 \right] \right\}亦覆盖了区间\left[ 0,1 \right] ,
根据有限覆盖定理,
存在有限个{{x}_{1}},{{x}_{2}},\cdots ,{{x}_{N}},使得
U\left( {{x}_{1}},{{\delta }_{{{x}_{1}}}} \right),U\left( {{x}_{2}},{{\delta }_{{{x}_{2}}}} \right),\cdots ,U\left( {{x}_{N}},{{\delta }_{{{x}_{N}}}} \right) 就能覆盖了\left[ 0,1 \right] ,
取\delta =\min \left\{ {{\delta }_{{{x}_{1}}}},{{\delta }_{{{x}_{2}}}},\cdots ,{{\delta }_{{{x}_{N}}}} \right\},
对任意{{y}_{1}},{{y}_{2}}\in \left[ 0,1 \right] ,
当\left| {{y}_{1}}-{{y}_{2}} \right|<\delta 时,
存在U\left( {{x}_{k}},{{\delta }_{{{x}_{k}}}} \right) ,有{{y}_{1}}\in U\left( {{x}_{k}},{{\delta }_{{{x}_{k}}}} \right) ,
\left| {{y}_{2}}-{{x}_{k}} \right|\le \left| {{y}_{1}}-{{y}_{2}} \right|+\left| {{y}_{1}}-{{x}_{k}} \right|<\delta +{{\delta }_{{{x}_{k}}}}\le 2{{\delta }_{{{x}_{k}}}},
于是{{y}_{1}},{{y}_{2}}\in U\left( {{x}_{k}},2{{\delta }_{{{x}_{k}}}} \right)\subset {{I}_{{{u}_{{{x}_{k}}}}}},
结论得证.
(2)例如\left\{ \left( \frac{1}{n+1},\frac{1}{n} \right) \right\}是\left( 0,1 \right) 的一个开覆盖,就没有这个性质.
三.证明 用反证法,假设结果不真,
存在M>0,使得{f}'\left( x \right)\le M,x\in \left( a-\delta ,a \right) .
对任意a-\delta <x<y<a,
由Lagrange中值定理,
f\left( y \right)=f\left( x \right)+{f}'\left( \xi \right)\left( y-x \right)
\le f\left( x \right)+M\left( y-x \right)\le f\left( x \right)+Ma,
从而f\left( x \right) 在a的某个左邻域内有上界,这与f\left( {{a}^{-}} \right)=+\infty 矛盾,
所以命题成立.
四.解 D=\left\{ \left( x,y \right):{{x}^{2}}+{{y}^{2}}\le y,x\ge 0 \right\},
D=\left\{ \left( x,y \right):{{x}^{2}}+{{\left( y-\frac{1}{2} \right)}^{2}}\le {{\left( \frac{1}{2} \right)}^{2}},x\ge 0 \right\},
\sigma \left( D \right)=\frac{1}{2}\pi {{\left( \frac{1}{2} \right)}^{2}}=\frac{\pi }{8},
z=\iint\limits_{D}{\sqrt{1-{{x}^{2}}-{{y}^{2}}}dxdy}=\int_{0}^{\frac{\pi }{2}}{d\theta \int_{0}^{\sin \theta }{\sqrt{1-{{r}^{2}}}rdr}}
=\int_{0}^{\frac{\pi }{2}}{\left. \left[ -\frac{1}{3}{{\left( 1-{{r}^{2}} \right)}^{\frac{3}{2}}} \right] \right|_{0}^{\sin \theta }d\theta }=\frac{1}{3}\int_{0}^{\frac{\pi }{2}}{\left( 1-{{\cos }^{3}}\theta \right)d\theta }
=\frac{\pi }{6}-\frac{1}{3}\int_{0}^{\frac{\pi }{2}}{\left( 1-{{\sin }^{2}}\theta \right)d\sin \theta }=\frac{\pi }{6}-\frac{2}{9},
由\iint\limits_{D}{f\left( x,y \right)dxdy}=\iint\limits_{D}{\sqrt{1-{{x}^{2}}-{{y}^{2}}}dxdy}-\frac{8}{\pi }\iint\limits_{D}{f\left( x,y \right)dxdy}\cdot \iint\limits_{D}{dxdy}
=\frac{\pi }{6}-\frac{2}{9}-\iint\limits_{D}{f\left( x,y \right)dxdy},
所以\iint\limits_{D}{f\left( x,y \right)dxdy}=\frac{\pi }{12}-\frac{1}{9},
所以f\left( x,y \right)=\sqrt{1-{{x}^{2}}-{{y}^{2}}}-\frac{8}{\pi }\left( \frac{\pi }{12}-\frac{1}{9} \right) .
五.解 利用极坐标和Gauss公式,I=\iint\limits_{D}{\left( \frac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}\frac{\partial f}{\partial x}+\frac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}\frac{\partial f}{\partial y} \right)dxdy}
=\int_{0}^{1}{dr\int_{0}^{2\pi }{\left( \cos \theta {{f}_{x}}+\sin \theta {{f}_{y}} \right)rd\theta }}=\int_{0}^{1}{dr\int\limits_{{{x}^{2}}+{{y}^{2}}={{r}^{2}}}{{{f}_{x}}dy-{{f}_{y}}dx}}
=\int_{0}^{1}{dr\iint\limits_{{{x}^{2}}+{{y}^{2}}={{r}^{2}}}{\left( {{f}_{xx}}+{{f}_{yy}} \right)dxdy}}=\int_{0}^{1}{dr\iint\limits_{{{x}^{2}}+{{y}^{2}}={{r}^{2}}}{{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}dxdy}}
=\int_{0}^{1}{dr\int_{0}^{2\pi }{d\theta \int_{0}^{r}{{{\rho }^{4}}\rho d\rho }}}=2\pi \cdot \frac{1}{6}\int_{0}^{1}{{{r}^{6}}dr}=2\pi \cdot \frac{1}{6}\cdot \frac{1}{7}=\frac{\pi }{21}.
六. 证明 因为\underset{n\to \infty }{\mathop{\lim }}\,{{a}_{n}}=+\infty ,对任给的A>0,存在{{N}_{1}}\in {{N}^{*}},使得凡是n>{{N}_{1}}时有{{a}_{n}}>3A;设n>{{N}_{1}},这时
\frac{{{a}_{1}}+{{a}_{2}}+\cdots +{{a}_{n}}}{n}=\frac{({{a}_{1}}+\cdots +{{a}_{{{N}_{1}}}})+{{a}_{{{N}_{1}}+1}}+\cdots +{{a}_{n}}}{n}
>\frac{{{a}_{1}}+\cdots +{{a}_{{{N}_{1}}}}}{n}+3A\frac{n-{{N}_{1}}}{n},又因\frac{{{a}_{1}}+\cdots +{{a}_{{{N}_{1}}}}}{n}\to 0,\frac{n-{{N}_{1}}}{n}=1-\frac{{{N}_{1}}}{n}\to 1,(n\to \infty ),
故可取正整数N>{{N}_{1}},使当n>N时,恒有|\frac{{{a}_{1}}+\cdots +{{a}_{{{N}_{1}}}}}{n}|<\frac{A}{2},\frac{n-{{N}_{1}}}{n}=1-\frac{{{N}_{1}}}{n}>\frac{1}{2}
于是,当n>N时,恒有\frac{{{a}_{1}}+{{a}_{2}}+\cdots +{{a}_{n}}}{n}>A,由此可知\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{a}_{1}}+{{a}_{2}}+\cdots +{{a}_{n}}}{n}=+\infty 。
显然,\underset{n\to \infty }{\mathop{\lim }}\,{{a}_{n}}=-\infty 等价于\underset{n\to \infty }{\mathop{\lim }}\,(-{{a}_{n}})=+\infty 。
定理 如果\underset{n\to \infty }{\mathop{\lim }}\,{{a}_{n}}=-\infty ,则\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{a}_{1}}+{{a}_{2}}+\cdots +{{a}_{n}}}{n}=-\infty 。
七、解 (1)\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( x \right)} ,\left[ 0,b \right] ,
所以{{\beta }_{n}}=\underset{x\in \left[ 0,+\infty \right)}{\mathop{\sup }}\,\left| {{u}_{n}}\left( x \right) \right|,\ge {{u}_{n}}\left( {{e}^{{{n}^{3}}}} \right)=\frac{1}{{{n}^{3}}}\ln \left( 1+{{n}^{3}}{{e}^{{{n}^{3}}}} \right) ,
(2)当\ge \frac{1}{{{n}^{3}}}\ln {{e}^{{{n}^{3}}}}=1时,\left\{ {{u}_{n}}\left( x \right) \right\},
\left[ 0,+\infty \right) ,
当0不存在,\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( x \right)} 在\left[ 0,+\infty \right) 处不连续,
当S\left( x \right) 不存在,\left[ 0,+\infty \right) 在{{{u}'}_{n}}\left( x \right)=\frac{{{n}^{3}}}{{{n}^{3}}\left( 1+{{n}^{3}}x \right)} 处不连续,
(3)当\sum\limits_{n=1}^{\infty }{{{{{u}'}}_{n}}\left( 0 \right)} 时,
\frac{f\left( \Delta x,\Delta y \right)-\left[ f(0,0)+{{f}_{x}}\left( 0,0 \right)\Delta x+{{f}_{y}}\left( 0,0 \right)\Delta y \right]}{\sqrt{{{\left( \Delta x \right)}^{2}}+{{\left( \Delta y \right)}^{2}}}}
0<{{{u}'}_{n}}\left( x \right)\le \frac{1}{{{n}^{3}}x}=\frac{1}{x}\frac{1}{{{n}^{3}}},
所以\sum\limits_{n=1}^{\infty }{{{{{u}'}}_{n}}\left( x \right)} 在点\left( 0,+\infty \right) 处可微,且df\left( 0,0 \right)=0 。
八.(1)解 \left( \frac{\partial }{\partial x}+\frac{\partial }{\partial y} \right)z=\left( x+y \right)\frac{\partial z}{\partial u},
{{\left( \frac{\partial }{\partial x}+\frac{\partial }{\partial y} \right)}^{2}}z=\left( \frac{\partial }{\partial x}+\frac{\partial }{\partial y} \right)\left( \left( x+y \right)\frac{\partial z}{\partial u} \right)
=2\frac{\partial z}{\partial u}+{{\left( x+y \right)}^{2}}\frac{{{\partial }^{2}}z}{\partial {{u}^{2}}},
由x=\frac{v\pm \sqrt{{{v}^{2}}+4u}}{2},y=\frac{-v\pm \sqrt{{{v}^{2}}+4u}}{2},
可知x+y=\sqrt{{{v}^{2}}+4u},\frac{{{\partial }^{2}}z}{\partial {{u}^{2}}}+\frac{1}{{{v}^{2}}+4u}\frac{\partial z}{\partial u}=0.
(2)由\frac{\partial \left( u,v \right)}{\partial \left( x,y \right)}=-\left( x+y \right) ,变量在x+y=0上失效,因为在此雅克比行列式为0.
九.(1)证明 对任意b>0,当x\in \left[ 0,b \right] 时,
0\le {{u}_{n}}\left( x \right)=\frac{1}{{{n}^{3}}}\ln \left( 1+{{n}^{3}}x \right)
\le \frac{1}{{{n}^{3}}}\ln \left( 1+{{n}^{3}}b \right)
\le \frac{1}{{{n}^{2}}}\frac{1}{n}\ln \left( 2{{n}^{3}}b \right)=\frac{1}{{{n}^{2}}}\frac{\ln \left( 2b \right)+3\ln n}{n} \left( {{n}^{3}}\ge \frac{1}{6} \right)
\le \frac{1}{{{n}^{2}}} , (n充分大)
而\sum\limits_{n=1}^{\infty }{\frac{1}{{{n}^{2}}}}收敛,所以\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( x \right)} 在\left[ 0,b \right] 上是一致收敛的.
因为{{\beta }_{n}}=\underset{x\in \left[ 0,+\infty \right)}{\mathop{\sup }}\,\left| {{u}_{n}}\left( x \right) \right|\ge {{u}_{n}}\left( {{e}^{{{n}^{3}}}} \right)=\frac{1}{{{n}^{3}}}\ln \left( 1+{{n}^{3}}{{e}^{{{n}^{3}}}} \right)
\ge \frac{1}{{{n}^{3}}}\ln {{e}^{{{n}^{3}}}}=1,
所以\left\{ {{u}_{n}}\left( x \right) \right\}在\left[ 0,+\infty \right) 上不一致收敛于0,
从而\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( x \right)} 在\left[ 0,+\infty \right) 上不一致收敛.
(2)显然S\left( x \right) 在\left[ 0,+\infty \right) 上连续,{{{u}'}_{n}}\left( x \right)=\frac{{{n}^{3}}}{{{n}^{3}}\left( 1+{{n}^{3}}x \right)} ,
显然\sum\limits_{n=1}^{\infty }{{{{{u}'}}_{n}}\left( 0 \right)} 发散,对于x>0,0<{{{u}'}_{n}}\left( x \right)\le \frac{1}{{{n}^{3}}x}=\frac{1}{x}\frac{1}{{{n}^{3}}},
可见\sum\limits_{n=1}^{\infty }{{{{{u}'}}_{n}}\left( x \right)} 在\left( 0,+\infty \right) 上收敛,
对任意\delta >0,当x\in \left[ \delta ,+\infty \right) 时,0<{{{u}'}_{n}}\left( x \right)\le \frac{1}{{{n}^{3}}x}\le \frac{1}{\delta }\frac{1}{{{n}^{3}}},
由此知,\sum\limits_{n=1}^{\infty }{{{{{u}'}}_{n}}\left( x \right)} 在\left[ \delta ,+\infty \right) 上一致收敛,且有{S}'\left( x \right)=\sum\limits_{n=1}^{\infty }{{{{{u}'}}_{n}}\left( x \right)} ,
所以S\left( x \right) 在\left[ \delta ,+\infty \right) 上连续可微,
由\delta >0的任意性,可知,S\left( x \right) 在\left( 0,+\infty \right) 上可微
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· dotnet 源代码生成器分析器入门
· ASP.NET Core 模型验证消息的本地化新姿势
· 对象命名为何需要避免'-er'和'-or'后缀
· “你见过凌晨四点的洛杉矶吗?”--《我们为什么要睡觉》
· 编程神器Trae:当我用上后,才知道自己的创造力被低估了多少
· C# 从零开始使用Layui.Wpf库开发WPF客户端
· 开发的设计和重构,为开发效率服务
· 从零开始开发一个 MCP Server!