Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

武汉大学2010年数学分析试题解答

武汉大学2010年数学分析试题解答

一、 1、解 lim=\underset{x\to 0}{\mathop{\lim }}\,\frac{\frac{\ln \left( 1+x \right)}{x}-1}{x}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\ln \left( 1+x \right)-x}{{{x}^{2}}}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\frac{1}{1+x}-1}{2x}=-\frac{1}{2}\underset{x\to 0}{\mathop{\lim }}\,\frac{1}{1+x}=-\frac{1}{2}.

2、  解 \sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+1}}\le \sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+\frac{1}{k}}}\le \sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+\frac{1}{n}}}

\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+1}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{n}{n+1}\sum\limits_{k=1}^{n}{\frac{1}{n}{{2}^{{}^{k}/{}_{n}}}}=\int_{0}^{1}{{{2}^{x}}dx}=\left. \left( \frac{1}{\ln 2}{{2}^{x}} \right) \right|_{0}^{1}=\frac{1}{\ln 2}

\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\frac{{{2}^{{}^{k}/{}_{n}}}}{n+\frac{1}{n}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{n}{n+\frac{1}{n}}\sum\limits_{k=1}^{n}{\frac{1}{n}{{2}^{{}^{k}/{}_{n}}}}=\int_{0}^{1}{{{2}^{x}}dx}=\frac{1}{\ln 2},所以\underset{n\to \infty }{\mathop{\lim }}\,\left( \frac{{{2}^{{}^{1}/{}_{n}}}}{n+1}+\frac{{{2}^{{}^{2}/{}_{n}}}}{n+\frac{1}{2}}+\cdots +\frac{{{2}^{{}^{n}/{}_{n}}}}{n+\frac{1}{n}} \right)=\frac{1}{\ln 2}.

3、  解:

\int{\frac{dx}{1+\tan x}}=\int{\frac{\cos x}{\cos x+\sin x}}dx=\frac{1}{2}\int{\frac{\left( \cos x+\sin x \right)+\left( \cos x-\sin x \right)}{\cos x+\sin x}}dx

=\frac{1}{2}x+\frac{1}{2}\ln \left| \sin x+\cos x \right|+C.

4、 解 :

G(x,\alpha )=\int\limits_{x-2\alpha }^{x+3\alpha }{\cos ({{x}^{2}}}+{{y}^{2}}+{{\alpha }^{2}})dy,则

F(\alpha )=\int\limits_{0}^{{{e}^{\alpha }}}{dx\int\limits_{x-2\alpha }^{x+3\alpha }{\cos ({{x}^{2}}}}+{{y}^{2}}+{{\alpha }^{2}})dy=\int\limits_{0}^{{{e}^{\alpha }}}{G(x,\alpha )dx}

于是

F'(\alpha )=\int\limits_{0}^{{{e}^{\alpha }}}{{{G}_{\alpha }}(x,\alpha )dx+{{e}^{\alpha }}}G({{e}^{\alpha }},\alpha )

{{G}_{\alpha }}(x,\alpha )=-2\alpha \int\limits_{x-2\alpha }^{x+3\alpha }{\sin ({{x}^{2}}}+{{y}^{2}}+{{\alpha }^{2}})dy+3\sin (2{{x}^{2}}+9{{\alpha }^{2}}+6ax)+2\sin (2{{x}^{2}}+4{{\alpha }^{2}}-4\alpha x)于是

F'(\alpha )=\int\limits_{0}^{{{e}^{\alpha }}}{[-2\alpha \int\limits_{x-2\alpha }^{x+3\alpha }{\sin ({{x}^{2}}}+{{y}^{2}}+{{\alpha }^{2}})dy+3\sin (2{{x}^{2}}+9{{\alpha }^{2}}+6ax)+2\sin (2{{x}^{2}}+4{{\alpha }^{2}}-4\alpha x)]dx}+{{e}^{\alpha }}\int\limits_{{{e}^{\alpha }}-2\alpha }^{{{e}^{\alpha }}+3\alpha }{\cos ({{e}^{2\alpha }}}+{{y}^{2}}+{{\alpha }^{2}})dy

5、 解 \iiint\limits_{V}{{{e}^{x}}{{y}^{2}}{{z}^{3}}dxdydz}=\int_{0}^{1}{{{e}^{x}}dx\int_{0}^{x}{{{y}^{2}}dy\int_{0}^{xy}{{{z}^{3}}dz}}}=\int_{0}^{1}{{{e}^{x}}dx\int_{0}^{x}{{{y}^{2}}\frac{1}{4}{{x}^{4}}{{y}^{4}}dy}}

=\frac{1}{4}\frac{1}{7}\int_{0}^{1}{{{x}^{11}}{{e}^{x}}dx}=\frac{1}{28}\int_{0}^{1}{{{x}^{11}}{{e}^{x}}dx} =1425600-\frac{7342285e}{14},(多次分部积)。

I(m)=\int_{0}^{1}{{{x}^{m}}{{e}^{x}}dx}=e-mI(m-1)

二、证明

方法一(1)当 a>\frac{1}{4}时,{{x}_{1}}\ge 0{{x}_{n+1}}=\sqrt{a+{{x}_{n}}}

 因为|{{x}_{n+1}}-{{x}_{n}}|=|\sqrt{a+{{x}_{n}}}-\sqrt{a+{{x}_{n-1}}}|

=\frac{1}{\sqrt{a+{{x}_{n}}}+\sqrt{a+{{x}_{n-1}}}}|{{x}_{n}}-{{x}_{n-1}}|\le \frac{1}{2\sqrt{a}}|{{x}_{n}}-{{x}_{n-1}}|n=2,3,\cdots$,

于是得压缩序列\{{{x}_{n}}\}是收敛的,设\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A,显然A\ge \sqrt{a}

{{x}_{n+1}}=\sqrt{a+{{x}_{n}}}两边令n\to \infty 取极限得到A=\sqrt{a+A}

从而{{A}^{2}}-A-a=0,解得A=\frac{1\pm \sqrt{1+4a}}{2},因为A\ge \sqrt{a},故A=\frac{1+\sqrt{1+4a}}{2} .

\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A=\frac{1+\sqrt{1+4a}}{2}  ;

  (2)当 0<a\le \frac{1}{4}{{x}_{1}}=\sqrt{a}{{x}_{n+1}}=\sqrt{a+{{x}_{n}}}

{{x}_{n}}\ge \sqrt{a}{{x}_{2}}\ge {{x}_{1}}{{x}_{n+1}}=\sqrt{a+{{x}_{n}}},由此推出\{{{x}_{n}}\}单调递增,

f(x)=\sqrt{a+x}单调递增,令A=\frac{1+\sqrt{1+4a}}{2},则有f(A)=A

{{x}_{1}}<A=\frac{1+\sqrt{1+4a}}{2},由此得{{x}_{n}}<A=\frac{1+\sqrt{1+4a}}{2}

\{{{x}_{n}}\}单调递增有界,设\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A,显然A\ge \sqrt{a}

{{x}_{n+1}}=\sqrt{a+{{x}_{n}}}两边令n\to \infty取极限得到A=\sqrt{a+A}

从而{{A}^{2}}-A-a=0,解得A=\frac{1\pm \sqrt{1+4a}}{2},因为A\ge \sqrt{a},故\[A=\frac{1+\sqrt{1+4a}}{2}$ .

\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A=\frac{1+\sqrt{1+4a}}{2}

方法二  令A=\frac{1+\sqrt{1+4a}}{2},则有A=\frac{1+\sqrt{1+4a}}{2}>1{{x}_{n+1}}^{2}=a+{{x}_{n}}{{A}^{2}}=a+A

从而|{{x}_{n+1}}-A|=\frac{|{{x}_{n}}-A|}{{{x}_{n}}+A}\le \frac{1}{A}|{{x}_{n}}-A|\le \cdots \le \frac{1}{{{A}^{n}}}|{{x}_{1}}-A|

于是\underset{n\to \infty }{\mathop{\lim }}\,{{x}_{n}}=A=\frac{1+\sqrt{1+4a}}{2}

 

 

三、 证明 令F(x)=xf(x) ,由积分中值定理,存在{{\xi }_{1}}\in \left( 0,\frac{1}{2} \right) ,使得

f(2)=\int_{0}^{\frac{1}{2}}{xf\left( x \right)dx}=\frac{1}{2}{{\xi }_{1}}f({{\xi }_{1}}),于是有F(2)=2f(2)={{\xi }_{1}}f({{\xi }_{1}})=F({{\xi }_{1}})

由罗尔中值定理,得存在\xi \in \left( 0,2 \right) ,使得{F}'(\xi )=0,即 f\left( \xi  \right)+\xi {f}'\left( \xi  \right)=0  。

四、 {{u}_{x}}=v+x{{v}_{x}}+y{\varphi }'\left( v \right){{v}_{x}}+{\psi }'\left( v \right){{v}_{x}}=v{{u}_{xx}}={{v}_{x}}{{u}_{xy}}={{v}_{y}}

{{u}_{y}}=x{{v}_{y}}+\varphi \left( v \right)+y{\varphi }'\left( v \right){{v}_{y}}+{\psi }'\left( v \right){{v}_{y}}=\varphi \left( v \right) {{u}_{yy}}={\varphi }'\left( v \right){{v}_{y}}{{u}_{yx}}={\varphi }'\left( v \right){{v}_{x}}

于是{{u}_{xx}}={{v}_{x}}{{u}_{yy}}={\varphi }'\left( v \right){{v}_{y}}{{u}_{xy}}={{v}_{y}}{{u}_{yx}}={\varphi }'\left( v \right){{v}_{x}}

\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}\cdot \frac{{{\partial }^{2}}u}{\partial {{y}^{2}}}-{{\left( \frac{{{\partial }^{2}}u}{\partial x\partial y} \right)}^{2}}={{v}_{x}}{\varphi }'(v){{v}_{y}}-{{u}_{xy}}\cdot {{u}_{yx}} ={{v}_{x}}{\varphi }'(v){{v}_{y}}-{{v}_{y}}{\varphi }'(v){{v}_{x}}=0

五、 解  两曲面的交线为{{x}^{2}}+{{y}^{2}}={{a}^{2}},z=aD=\{(x,y):{{x}^{2}}+{{y}^{2}}\le {{a}^{2}}\}

{{S}_{1}}:z=2a-\sqrt{{{x}^{2}}+{{y}^{2}}},(x,y)\in D{{S}_{2}}:z=\frac{1}{a}({{x}^{2}}+{{y}^{2}}),(x,y)\in D

d\sigma =\sqrt{1+{{(\frac{\partial z}{\partial x})}^{2}}+{{(\frac{\partial z}{\partial y})}^{2}}}dxdy,曲面的面积

{{S}_{1}}=\iint\limits_{D}{\sqrt{1+{{(\frac{\partial z}{\partial x})}^{2}}+{{(\frac{\partial z}{\partial y})}^{2}}}}dxdy=\iint\limits_{D}{\sqrt{2}}dxdy=\sqrt{2}\pi {{a}^{2}}

{{S}_{2}}=\iint\limits_{D}{\sqrt{1+{{(\frac{\partial z}{\partial x})}^{2}}+{{(\frac{\partial z}{\partial y})}^{2}}}}dxdy=\iint\limits_{D}{\frac{\sqrt{{{a}^{2}}+4{{x}^{2}}+4{{y}^{2}}}}{a}}dxdy=\int_{0}^{2\pi }{d}\theta \int_{0}^{a}{\frac{\sqrt{{{a}^{2}}+4{{r}^{2}}}}{a}}\cdot rdr

=2\pi \frac{1}{a}\frac{1}{3}\frac{1}{4}{{({{a}^{2}}+4{{r}^{2}})}^{{}^{3}/{}_{2}}}|_{0}^{a}=\frac{\pi (5\sqrt{5}-1){{a}^{2}}}{6}

则所求曲面的面积为S={{S}_{1}}+{{S}_{2}}=\sqrt{2}\pi {{a}^{2}}+\frac{\pi (5\sqrt{5}-1){{a}^{2}}}{6}

六、证明 对任意a>0,当x\ge 1+a时,设{{u}_{n}}\left( x \right)=\frac{\ln \left( 1+nx \right)}{n{{x}^{n}}}

0<{{u}_{n}}\left( x \right)\le \frac{nx}{n{{x}^{n}}}=\frac{1}{{{x}^{n-1}}}\le \frac{1}{{{\left( 1+a \right)}^{n-1}}},而\sum\limits_{n=1}^{\infty }{\frac{1}{{{\left( 1+a \right)}^{n-1}}}}收敛,所以\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( x \right)} x\in \left[ 1+a,+\infty  \right) 上一致收敛;由{{u}_{n}}\left( x \right) \left[ 1+a,+\infty  \right) 上连续,所以f\left( x \right)=\sum\limits_{n=1}^{\infty }{\frac{\ln \left( 1+nx \right)}{n{{x}^{n}}}}\left[ 1+a,+\infty  \right) 上连续,由a>0的任意性,知f\left( x \right) \left( 1,+\infty  \right) 上连续;由{{u}_{n}}\left( 1 \right)=\frac{\ln \left( 1+n \right)}{n}>\frac{1}{n},(n>2) ,显然\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( 1 \right)} 发散,所以\sum\limits_{n=1}^{\infty }{{{u}_{n}}\left( x \right)} \left( 1,+\infty  \right) 不一致收敛.

七、设\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx.证明(1) 设f(x,u)={{e}^{-{{x}^{2}}}}\cos ux,则有f(x,u) [0,+\infty )\times (-\infty ,+\infty ) 上连续,且有|f(x,u)|\le {{e}^{-{{x}^{2}}}},而\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}dx收敛,根据魏尔斯特拉斯判别法,积分\int_{0}^{+\infty }{f(x,u)}dx (-\infty ,+\infty ) 上一致收敛,所以\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx的定义域为 (-\infty ,+\infty )

(2) f(x,u) \frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u) [0,+\infty )\times (-\infty ,+\infty ) 上连续,且有|f(x,u)|\le {{e}^{-{{x}^{2}}}}|\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u)|\le {{x}^{k}}{{e}^{-{{x}^{2}}}},而\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}dx\int_{0}^{+\infty }{{{x}^{k}}{{e}^{-{{x}^{2}}}}}dx收敛,根据魏尔斯特拉斯判别法,积分\int_{0}^{+\infty }{f(x,u)}dx\int_{0}^{+\infty }{\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u)}dx均在 (-\infty ,+\infty ) 上一致收敛,k=1,2,\cdots

于是\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx (-\infty ,+\infty ) 上连续可微,且\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx (-\infty ,+\infty ) 上具任意阶的连续导数;{{\varphi }^{(k)}}(u)=\int_{0}^{+\infty }{\frac{{{\partial }^{k}}}{\partial {{u}^{k}}}f(x,u)}dxk=1,2,\cdots

(3) {\varphi }'(u)=\int_{0}^{+\infty }{\frac{\partial }{\partial u}({{e}^{-{{x}^{2}}}}}\cos ux)dx=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}(-x\sin ux)dx

=\int_{0}^{+\infty }{\sin ux}d(\frac{1}{2}{{e}^{-{{x}^{2}}}})=-\int_{0}^{+\infty }{\frac{1}{2}{{e}^{-{{x}^{2}}}}(}u\cos ux)dx=-\frac{u}{2}\phi (u) ,由此得 [\ln \phi (u){]}'=-\frac{u}{2},积分得\ln \phi (u)=-\frac{{{u}^{2}}}{4}+{{C}_{1}}从而有\phi (u)=C{{e}^{-\frac{{{u}^{2}}}{4}}},\[C=\phi (0)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}dx=\frac{\sqrt{\pi }}{2}$,

\phi (u)=\int_{0}^{+\infty }{{{e}^{-{{x}^{2}}}}}\cos uxdx=\frac{\sqrt{\pi }}{2}{{e}^{-\frac{{{u}^{2}}}{4}}}  .

八、证明 设D=\{(x,y,z):\frac{{{\left( x-3 \right)}^{2}}}{16}+\frac{{{\left( y-2 \right)}^{2}}}{9}\le 1,z=0\}n=(0,0,1) D\Sigma所围的区域为V,显然点 (0,0,0) V的外部,曲面\sum没有罩着点 (0,0,0) div(\frac{1}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}(x,y,z))=0,利用高斯公式,得

\iint\limits_{\sum }{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=\iint\limits_{D}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=0.此题出的错误。

应把曲面方程改为使D\Sigma 所围的区域V含点 (0,0,0) 。曲面\sum应罩着点 (0,0,0) 。改为:\sum 1-\frac{z}{5}=\frac{{{\left( x-2 \right)}^{2}}}{16}+\frac{{{\left( y-2 \right)}^{2}}}{9}z\ge 0)的上侧.求证\iint\limits_{\sum }{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=2\pi .

证明  取\varepsilon >0充分小,{{S}_{\varepsilon }}:{{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{\varepsilon }^{2}}(z\ge 0) {{D}_{\varepsilon }}=(x,y,z):{{x}^{2}}+{{y}^{2}}\ge {{\varepsilon }^{2}},\frac{{{\left( x-2 \right)}^{2}}}{16}+\frac{{{\left( y-2 \right)}^{2}}}{9}\le 1,z=0\}div(\frac{1}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}(x,y,z))=0

{{D}_{\varepsilon }}{{S}_{\varepsilon }}\Sigma 所围的区域为{{V}_{\varepsilon }},利用高斯公式,得

\iint\limits_{\sum }{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}=\iint\limits_{{{S}_{\varepsilon }}+{{D}_{\varepsilon }}}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}

=\iint\limits_{{{S}_{\varepsilon }}}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}+\iint\limits_{{{D}_{\varepsilon }}}{\frac{xdydz+ydzdx+zdxdy}{{{\left( {{x}^{2}}+{{y}^{2}}+{{z}^{2}} \right)}^{{\scriptstyle{}^{3}/{}_{2}}}}}}

=\frac{1}{{{\varepsilon }^{3}}}\iint\limits_{{{S}_{\varepsilon }}}{xdydz+ydzdx+zdxdy}+0

=\frac{1}{{{\varepsilon }^{3}}}\iint\limits_{{{S}_{\varepsilon }}}{\frac{1}{\varepsilon }}({{x}^{2}}+{{y}^{2}}+{{z}^{2}})dS

=\frac{1}{{{\varepsilon }^{2}}}\iint\limits_{{{S}_{\varepsilon }}}{dS}=\frac{1}{{{\varepsilon }^{2}}}\frac{1}{2}4\pi {{\varepsilon }^{2}}=2\pi

九、证明  (1)对\forall {{x}_{1}},{{x}_{2}}\in [0,+\infty ) ,成立|\sqrt{{{x}_{2}}}-\sqrt{{{x}_{1}}}|\le \sqrt{|{{x}_{2}}-{{x}_{1}}|}\left| f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right) \right|\le \sqrt{|{{x}_{2}}-{{x}_{1}}|},由此知f\left( x \right)=\sqrt{x}\left[ 0,+\infty  \right) 上是一致连续的;

(2)   因为f\left( x \right)=\sqrt{x}\left( 0,+\infty  \right) 内可导,导函数{f}'\left( x \right)=\frac{1}{2\sqrt{x}}\left( 0,+\infty  \right) 内无界,

所以f\left( x \right)=\sqrt{x}\left[ 0,+\infty  \right) 上不是Lipschitz连续的。 注:设p\ge 1,则对\forall {{x}_{1}},{{x}_{2}}\in [0,+\infty )

成立|{{x}_{2}}^{\frac{1}{p}}-{{x}_{1}}^{\frac{1}{p}}|\le |{{x}_{2}}-{{x}_{1}}{{|}^{\frac{1}{p}}}。(这个结果,用简单初等方法就能证出。)

 

posted @   牙膏高露洁  阅读(1145)  评论(0编辑  收藏  举报
编辑推荐:
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· dotnet 源代码生成器分析器入门
阅读排行:
· 互联网不景气了那就玩玩嵌入式吧,用纯.NET开发并制作一个智能桌面机器人(四):结合BotSharp
· Vite CVE-2025-30208 安全漏洞
· 《HelloGitHub》第 108 期
· MQ 如何保证数据一致性?
· 一个基于 .NET 开源免费的异地组网和内网穿透工具
点击右上角即可分享
微信分享提示