武汉大学2012年数学分析试题解答
武汉大学2012年数学分析试题解答
1:计算
(1) 解:由1-\frac{1}{\sum\limits_{i=0}^{k}{(2i+1)}}=1-\frac{1}{k(k+1)+k}=\frac{k(k+2)}{{{(k+1)}^{2}}}=\frac{k}{k+1}\cdot \frac{k+2}{k+1}
从而(1-\frac{1}{1+3})(1-\frac{1}{1+3+5})\cdots (1-\frac{1}{1+3+\cdots +(2n+1)})=\frac{1}{n+1}\cdot \frac{n+2}{2}
于是\underset{n\to +\infty }{\mathop{\lim }}\,(1-\frac{1}{1+3})(1-\frac{1}{1+3+5})\cdots (1-\frac{1}{1+3+\cdots +(2n+1)})=\frac{1}{2}
(2) 解:原极限=\underset{x\to 0}{\mathop{\lim }}\,\frac{\int\limits_{0}^{x}{\sin ({{t}^{2}})dt}}{4{{x}^{3}}}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ({{x}^{2}})}{12{{x}^{2}}}=\frac{1}{12}
(3) 解:由于F(x)=\frac{1}{x}\int\limits_{0}^{x}{\cos {{t}^{2}}}dt=\frac{1}{x}\int\limits_{0}^{x}{\sum\limits_{n=0}^{\infty }{\frac{{{(-1)}^{n}}}{(2n)!}{{t}^{4n}}}}dt=\sum\limits_{n=0}^{\infty }{\frac{{{(-1)}^{n}}}{(2n)!}\cdot \frac{{{x}^{4n}}}{4n+1}}
从而{{F}^{(8)}}(0)=\frac{1}{4!}\cdot \frac{1}{9}\cdot 8!=\frac{8!}{216}=\frac{560}{3},{{F}^{(10)}}(0)=0
(4) 解:{{z}_{x}}=yf_{1}^{'}+f_{2}^{'}
{{z}_{xx}}=y(yf_{11}^{''}+f_{12}^{''})+(yf_{21}^{''}+f_{22}^{''})={{y}^{2}}f_{11}^{''}+2yf_{12}^{''}+f_{22}^{''}
{{z}_{xy}}=f_{1}^{'}+xyf_{11}^{''}+(x+y)f_{12}^{''}+f_{22}^{''}
(5) 解:原式=\iint_{D}{\ln ydxdy-2\iint_{D}{\operatorname{lnx}dxdy}}
=\int\limits_{0}^{1}{\ln ydy\int\limits_{y}^{2}{dx}}-2\int\limits_{0}^{1}{\ln xdy\int\limits_{1}^{x}{dx}}
=\int\limits_{1}^{2}{(2-y)\ln ydy-2\int\limits_{1}^{2}{(x-1)\ln xdx}}
=\int\limits_{1}^{2}{(4-3x)\ln xdx}
=2\ln 2-\frac{7}{4}
2:证明:设{{S}_{n}}=\sum\limits_{i=1}^{n}{a_{i}^{n}}
由于\underset{n\to \infty }{\mathop{\lim }}\,{{a}_{n}}>0,则存在{{N}_{1}}>0,当n>{{N}_{1}}时,使得{{a}_{n}}>0
而{{a}_{n+1}}\ge {{a}_{n}},则存在{{N}_{2}}>0,当n>{{N}_{2}}时,使得{{S}_{n}}\ge 0
且{{N}_{2}}\ge {{N}_{1}},于是
当n>{{N}_{2}}时,必有a_{n}^{n}\le \sum\limits_{i=1}^{n}{a_{i}^{n}}\le na_{n}^{n}
即{{a}_{n}}\le \sqrt[n]{{{S}_{n}}}\le \sqrt[n]{n}{{a}_{n}}
两边取极限,由迫敛性知:\underset{n\to +\infty }{\mathop{\lim }}\,\sqrt[n]{\sum\limits_{k=1}^{n}{a_{k}^{n}}}=a
3:证明:反证法。若\underset{x\in (a,b)}{\mathop{\sup }}\,\left| f'(x) \right|=M<\infty
则 \underset{x\in (a,b)}{\mathop{\sup }}\,\left| f'(x) \right|=\underset{x\in (a,b)}{\mathop{\sup }}\,\left| f(\frac{a+b}{2})+f'(\xi )(x-\frac{a+b}{2}) \right|
\le \left| f(\frac{a+b}{2}) \right|+M\cdot \frac{b-a}{2}<\infty
矛盾,即假设不成立,原命题成立!
4:证明:由
\int\limits_{a}^{b}{f(x)\int\limits_{a}^{b}{\left| g(x)-g(t) \right|}}dtdx=\int\limits_{a}^{b}{f(x)\int\limits_{a}^{x}{\left| g(x)-g(t) \right|}}dtdx+\int\limits_{a}^{b}{f(x)\int\limits_{x}^{b}{\left| g(x)-g(t) \right|}}dtdx
=\int\limits_{a}^{b}{\int\limits_{t}^{b}{f(x)\left| g(x)-g(t) \right|}}dtdx+\int\limits_{a}^{b}{\int\limits_{t}^{b}{f(t)\left| g(x)-g(t) \right|}}dtdx
=\int\limits_{a}^{b}{\int\limits_{t}^{b}{\left| f(x)-f(t) \right|\left| g(x)-g(t) \right|}}dtdx\ge 0
即知:(b-a)\int\limits_{a}^{b}{f(x)g(x)dx\ge }\int\limits_{a}^{b}{f(x)dx}\int\limits_{a}^{b}{g(x)dx}
5:解:(1){{f}_{x}}(0,0)=\underset{x\to 0}{\mathop{\lim }}\,\frac{f(x,0)-f(0,0)}{x}=0,{{f}_{x}}(0,0)=\underset{x\to 0}{\mathop{\lim }}\,\frac{f(0,y)-f(0,0)}{y}=0
即存在,且都为0
(2)当{{x}^{2}}+{{y}^{2}}\ne 0时,{{f}_{x}}(x,y)=\frac{2x{{y}^{3}}}{{{({{x}^{2}}+{{y}^{2}})}^{2}}},{{f}_{y}}(x,y)=\frac{{{x}^{2}}({{x}^{2}}-{{y}^{2}})}{{{({{x}^{2}}+{{y}^{2}})}^{2}}}
而\underset{y=kx\to 0}{\mathop{\lim }}\,{{f}_{x}}(x,y)=\frac{2{{k}^{3}}}{{{(1+{{k}^{2}})}^{2}}},\underset{y=kx\to 0}{\mathop{\lim }}\,{{f}_{y}}(x,y)=\frac{1-{{k}^{2}}}{{{(1+{{k}^{2}})}^{2}}}与k有关
从而 {{f}_{x}}(x,y),{{f}_{y}}(x,y)在(0,0)不连续。
(1) 由 \underset{y=kx\to 0}{\mathop{\lim }}\,\frac{f(x,y)-f(0,0)-{{f}_{x}}(0,0)x-{{f}_{y}}(0,0)y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}=\frac{k}{{{(1+{{k}^{2}})}^{\frac{3}{2}}}}
即知f(x,y)在(0,0)上不可微
6:证明:设三个单参数曲面族分别为
F(x,y,z)=xz-uy=0
G(x,y,z)=\sqrt{{{x}^{2}}+{{y}^{2}}}+\sqrt{{{y}^{2}}+{{z}^{2}}}-v=0
H(x,y,z)=\sqrt{{{x}^{2}}+{{y}^{2}}}-\sqrt{{{y}^{2}}+{{z}^{2}}}-w=0
则在它们的公共点(x,y,z) 处的法向量分别为
{{n}_{F}}(x,y,z,u)=(z,-u,x)=(z,-\frac{xz}{y},x)
{{n}_{G}}(x,y,z,v)=(\frac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}},\frac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}+\frac{y}{\sqrt{{{y}^{2}}+{{z}^{2}}}},\frac{z}{\sqrt{{{y}^{2}}+{{z}^{2}}}})
{{n}_{H}}(x,y,z,v)=(\frac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}},\frac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}-\frac{y}{\sqrt{{{y}^{2}}+{{z}^{2}}}},\frac{-z}{\sqrt{{{y}^{2}}+{{z}^{2}}}})
易验证\left\langle {{n}_{F}},{{n}_{G}} \right\rangle =\left\langle {{n}_{G}},{{n}_{H}} \right\rangle =\left\langle {{n}_{H}},{{n}_{F}} \right\rangle =0,从而结论成立。
7:证明:由
\frac{\partial (u,v)}{\partial (x,y)}
=\left|\begin{array}{cccc} {{u_x}} & {{u_y}} \\ {{v_x}} & {{v_y}} \end{array}\right|
=\left|\begin{array}{cccc} {f'(x)} & 0 \\ {f(x) + xf'(x)} & -1 \end{array}\right|
=-f'(x)
而f'({{x}_{0}})\ne 0且在({{x}_{0}},{{y}_{0}})附近是局部可逆的,从而
u=f(x)\Rightarrow x=g(u)
v=xf(x)-v=ug(u)-v
8:解:(1)当x=0时,S(x)=0;当x>0 时,由
\underset{y\to \infty }{\mathop{\lim }}\,\frac{u(x,y)}{{}^{1}/{}_{{{y}^{2}}}}=\underset{y\to \infty }{\mathop{\lim }}\,\frac{\ln (1+{{y}^{3}}x)}{y}=\underset{y\to \infty }{\mathop{\lim }}\,\frac{3{{y}^{2}}x}{1+{{y}^{3}}x}=0
知S(x)有定义;当x<0时,1+{{y}^{3}}x>0\Rightarrow y<\frac{-1}{\sqrt[3]{x}}
知S(x)不存在,综上所述,S(x)的定义域为[0,+\infty )
(2) \frac{\ln (1+{{y}^{3}}x)}{{{y}^{3}}}\le \frac{\ln (1+{{y}^{3}}b)}{{{y}^{3}}}(0\le x\le b),即知S(x)在有界区间[0,b]上是一致收敛
(2) 又由\int\limits_{n}^{2n}{\frac{\ln (1+{{y}^{3}}{{e}^{{{n}^{2}}}})}{{{y}^{3}}}}dy\ge \int\limits_{n}^{2n}{\frac{{{\operatorname{lne}}^{{{n}^{2}}}}}{{{(2n)}^{3}}}}dy=\frac{1}{4} ,即知在(0,+\infty )上不是一致收敛的
(3) 由{{u}_{x}}(x,y)=\frac{1}{1+{{y}^{3}}x}\le \frac{1}{{{y}^{3}}a}(0<a\le x<\infty )
即知S(x)在(0,+\infty )上可微,又由
\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{S(x)-S(0)}{x}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\int\limits_{1}^{+\infty }{\frac{\ln (1+{{y}^{3}}x)}{{{y}^{3}}x}}dy
=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\int\limits_{x}^{+\infty }{\frac{\ln (1+u)}{u}\cdot \frac{1}{3{{x}^{\frac{1}{3}}}{{u}^{\frac{2}{3}}}}}du=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{1}{3{{x}^{\frac{1}{3}}}}\int\limits_{0}^{+\infty }{\frac{\ln (1+u)}{u}}du=\infty
知S(x)在x=0处不可导
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步