Hbase基础入门
1.简介
- Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩、实时读写的分布式数据库
- 利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理HBase中的海量数据,利用Zookeeper作为其分布式协同服务
- 主要用来存储非结构化和半结构化的松散数据(列存 NoSQL 数据库)
2.数据模型
-
ROW KEY
决定一行数据
按照字典顺序排序的。
Row key只能存储64k的字节数据 -
Column Family列族 & qualifier列
HBase表中的每个列都归属于某个列族,列族必须作为表模式(schema)定义的一部分预先给出。如 create ‘test’, ‘course’;
列名以列族作为前缀,每个“列族”都可以有多个列成员(column);如course:math, course:english, 新的列族成员(列)可以随后按需、动态加入;
权限控制、存储以及调优都是在列族层面进行的;
HBase把同一列族里面的数据存储在同一目录下,由几个文件保存。
- Cell单元格
由行和列的坐标交叉决定;
单元格是有版本的;
单元格的内容是未解析的字节数组;
由{row key, column( =
cell中的数据是没有类型的,全部是字节数组形式存贮。
3.架构模型
-
Client 包含访问HBase的接口并维护cache来加快对HBase的访问
-
Zookeeper
保证任何时候,集群中只有一个活跃master
存贮所有Region的寻址入口。
实时监控Region server的上线和下线信息。并实时通知Master
存储HBase的schema和table元数据
- Master
为Region server分配region
负责Region server的负载均衡
发现失效的Region server并重新分配其上的region
管理用户对table的增删改操作
- RegionServer
Region server维护region,处理对这些region的IO请求
Region server负责切分在运行过程中变得过大的region
- Region
HBase自动把表水平划分成多个区域(region),每个region会保存一个表里面某段连续的数据
每个表一开始只有一个region,随着数据不断插入表,region不断增大,当增大到一个阀值的时候,region就会等分会两个新的region(裂变)
当table中的行不断增多,就会有越来越多的region。这样一张完整的表被保存在多个Regionserver上。
- Memstore 与 storefile
一个region由多个store组成,一个store对应一个CF(列族)
store包括位于内存中的memstore和位于磁盘的storefile写操作先写入memstore,当memstore中的数据达到某个阈值,hregionserver会启动flashcache进程写入storefile,每次写入形成单独的一个storefile
当storefile文件的数量增长到一定阈值后,系统会进行合并(minor、major compaction),在合并过程中会进行版本合并和删除工作(majar),形成更大的storefile
当一个region所有storefile的大小和数量超过一定阈值后,会把当前的region分割为两个,并由hmaster分配到相应的regionserver服务器,实现负载均衡
客户端检索数据,先在memstore找,找不到再找storefile
4.读写流程
读流程
写流程