Leetcode 1584连接所有点的最小费用

题目定义:

给你一个points 数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi] 。

连接点 [xi, yi] 和点 [xj, yj] 的费用为它们之间的 
      曼哈顿距离 :|xi - xj| + |yi - yj| ,其中 |val| 表示 val 的绝对值。

请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。

示例 1:

输入:points = [[0,0],[2,2],[3,10],[5,2],[7,0]]
输出:20

img

我们可以按照上图所示连接所有点得到最小总费用,总费用为 20 。
注意到任意两个点之间只有唯一一条路径互相到达。
    
示例 2:
    输入:points = [[3,12],[-2,5],[-4,1]]
    输出:18
    
示例 3:
    输入:points = [[0,0],[1,1],[1,0],[-1,1]]
    输出:4
    
示例 4:
    输入:points = [[-1000000,-1000000],[1000000,1000000]]
    输出:4000000
    
示例 5:
    输入:points = [[0,0]]
    输出:0

方式一(kruskal):

class Solution {
    public int minCostConnectPoints(int[][] points) {
        int length = points.length,ans = 0,num = 0;
        List<Edge> edgs = new ArrayList<>(); 
        UnionFind unionFind = new UnionFind(length);
        for(int i = 0; i < length; i++)
            for(int j = i + 1; j < length; j++)
                edgs.add(new Edge(dist(points,i,j),i,j));
        edgs.sort(Comparator.comparingInt((Edge e)->e.len));
        for(Edge edg : edgs){
            if(unionFind.union(edg.x,edg.y)){
                ++num;
                ans += edg.len;
                if(num == length)
                    break;
            }
        }
        return ans;
    }
    private int dist(int[][] points,int x,int y){
        return Math.abs(points[x][0] - points[y][0]) + Math.abs(points[x][1] - points[y][1]);
    }
}

class UnionFind{
    int[] parent;
    int[] rank;

    UnionFind(int n){
        parent = new int[n];
        rank = new int[n];
        for(int i = 0; i < n; i++){
            parent[i] = i;
            rank[i] = 1;
        }
    }
    
    boolean union(int x,int y){
        int rootX = find(x);
        int rootY = find(y);
        if(rootX == rootY)
            return false;
        if(rootX < rootY){
            rootX = rootX ^ rootY;
            rootY = rootX ^ rootY;
            rootX = rootX ^ rootY;
        }
        rank[rootX] += rank[rootY];
        parent[rootY] = rootX;
        return true;
    }

    private int find(int index){
        if(parent[index] != index)
            parent[index] = find(parent[index]);
        return parent[index];
    }
}

class Edge{
    int len,x,y;
    Edge(int len,int x,int y){
        this.len = len;
        this.x = x;
        this.y = y;
    }
}

方式二(prime):

class Solution {
    public int minCostConnectPoints(int[][] points) {
        int[] lowCost = new int[points.length];
        int checkPoint = 0;
        int cost = 0;
        Arrays.fill(lowCost,Integer.MAX_VALUE);
        lowCost[0] = 0;
        for(int i = 0; i < points.length - 1; i++){
            int minCost = Integer.MAX_VALUE;
            int minPoint = 0;
            for(int j = 0; j < points.length; j++){
                if(lowCost[j] != 0){
                    lowCost[j] = Math.min(lowCost[j],dist(points,checkPoint,j));
                    if(lowCost[j] < minCost){
                        minCost = lowCost[j];
                        minPoint = j;
                    }
                }
            }
            checkPoint = minPoint;
            lowCost[minPoint] = 0;
            cost += minCost;
        }
        return cost;
    }
    private int dist(int[][] points,int x,int y){
        return Math.abs(points[x][0] - points[y][0]) + Math.abs(points[x][1] - points[y][1]);
    }
}

参考:

https://leetcode-cn.com/problems/min-cost-to-connect-all-points/

posted @ 2021-01-20 11:24  0xHigos  阅读(101)  评论(0编辑  收藏  举报