数据结构定义:
给定一个二叉搜索树和一个目标结果,如果 BST 中存在两个元素且它们的和等于给定的目标结果,则返回 true。
案例 1:
输入:
5
/ \
3 6
/ \ \
2 4 7
Target = 9
输出: True
案例 2:
输入:
5
/ \
3 6
/ \ \
2 4 7
Target = 28
输出: False
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
递归方式:
class Solution {
private Set<Integer> set = new HashSet<>();
public boolean findTarget(TreeNode root, int k) {
if(root == null)
return false;
if(set.contains(k - root.val))
return true;
set.add(root.val);
return findTarget(root.left,k) || findTarget(root.right,k);
}
}
广度优先遍历方式:
class Solution {
public boolean findTarget(TreeNode root, int k) {
if(root == null)
return false;
Set<Integer> set = new HashSet<>();
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()){
TreeNode node = queue.poll();
if(set.contains(k - node.val))
return true;
set.add(node.val);
if(node.left != null)
queue.offer(node.left);
if(node.right != null)
queue.offer(node.right);
}
return false;
}
}
中序 + 双指针:
/*
* 思路: 先中序遍历出所有的数值,然后双指针比较两数之和
*/
class Solution {
private List<Integer> list =new ArrayList<>();
public boolean findTarget(TreeNode root, int k) {
if(root == null)
return false;
inOrder(root);
int i = 0,j = list.size()-1;
while(i < j){
int sum = list.get(i) + list.get(j);
if(sum == k)
return true;
else if(sum < k)
i++;
else
j--;
}
return false;
}
private void inOrder(TreeNode root){
if(root == null)
return;
inOrder(root.left);
list.add(root.val);
inOrder(root.right);
}
}
最优解:
/*
* 思路: 每拿到一个节点,就在整棵树种判断是否右相匹配的节点使它们的和等于 k
*/
class Solution {
private List<Integer> list =new ArrayList<>();
public boolean findTarget(TreeNode root, int k) {
if(root == null)
return false;
inOrder(root);
int i = 0,j = list.size()-1;
while(i < j){
int sum = list.get(i) + list.get(j);
if(sum == k)
return true;
else if(sum < k)
i++;
else
j--;
}
return false;
}
private void inOrder(TreeNode root){
if(root == null)
return;
inOrder(root.left);
list.add(root.val);
inOrder(root.right);
}
}