基于图像处理和tensorflow实现GTA5的车辆自动驾驶——第七节绘制优化后的道路线条

代码已放到码云

https://gitee.com/photographer_adam/Based-on-image-processing-and-tensorflow-to-realize-GTA5-vehicle-automatic-driving

效果

第六节实现的效果

本节效果

注:

本节作者一开篇就说了这句话:

实现的效果确实可以,但是代码很复杂,我看了下也不想加注释了 :(,等整个项目实现的时候再回来填这个坑吧

本节代码修改的较多,我直接附上整个源代码好了

import numpy as np
from PIL import ImageGrab
import cv2
import time


def compare_lines(lines, color=[0, 255, 255], thickness=3):
    '''
    try:
        for line in lines:
            coords = line[0]
            cv2.line(img=img, pt1=(coords[0], coords[1]),
                     pt2=(coords[2], coords[3]), color=[255, 255, 255], thickness=3
                     )
    except:
        pass
    '''
    # if this fails, go with some default line
    try:

        # finds the maximum y value for a lane marker
        # (since we cannot assume the horizon will always be at the same point.)

        ys = []
        for i in lines:
            for ii in i:
                ys += [ii[1], ii[3]]
        min_y = min(ys)
        max_y = 600
        new_lines = []
        line_dict = {}

        for idx, i in enumerate(lines):
            for xyxy in i:
                # These four lines:
                # modified from http://stackoverflow.com/questions/21565994/method-to-return-the-equation-of-a-straight-line-given-two-points
                # Used to calculate the definition of a line, given two sets of coords.
                x_coords = (xyxy[0], xyxy[2])
                y_coords = (xyxy[1], xyxy[3])
                A = np.vstack([x_coords, np.ones(len(x_coords))]).T
                m, b = np.linalg.lstsq(A, y_coords)[0]

                # Calculating our new, and improved, xs
                x1 = (min_y - b) / m
                x2 = (max_y - b) / m

                line_dict[idx] = [m, b, [int(x1), min_y, int(x2), max_y]]
                new_lines.append([int(x1), min_y, int(x2), max_y])

        final_lanes = {}

        for idx in line_dict:
            final_lanes_copy = final_lanes.copy()
            m = line_dict[idx][0]
            b = line_dict[idx][1]
            line = line_dict[idx][2]

            if len(final_lanes) == 0:
                final_lanes[m] = [[m, b, line]]

            else:
                found_copy = False

                for other_ms in final_lanes_copy:

                    if not found_copy:
                        if abs(other_ms * 1.2) > abs(m) > abs(other_ms * 0.8):
                            if abs(final_lanes_copy[other_ms][0][1] * 1.2) > abs(b) > abs(
                                    final_lanes_copy[other_ms][0][1] * 0.8):
                                final_lanes[other_ms].append([m, b, line])
                                found_copy = True
                                break
                        else:
                            final_lanes[m] = [[m, b, line]]

        line_counter = {}

        for lanes in final_lanes:
            line_counter[lanes] = len(final_lanes[lanes])

        top_lanes = sorted(line_counter.items(), key=lambda item: item[1])[::-1][:2]

        lane1_id = top_lanes[0][0]
        lane2_id = top_lanes[1][0]

        def average_lane(lane_data):
            x1s = []
            y1s = []
            x2s = []
            y2s = []
            for data in lane_data:
                x1s.append(data[2][0])
                y1s.append(data[2][1])
                x2s.append(data[2][2])
                y2s.append(data[2][3])
            return int(np.mean(x1s)), int(np.mean(y1s)), int(np.mean(x2s)), int(np.mean(y2s))

        l1_x1, l1_y1, l1_x2, l1_y2 = average_lane(final_lanes[lane1_id])
        l2_x1, l2_y1, l2_x2, l2_y2 = average_lane(final_lanes[lane2_id])

        return [l1_x1, l1_y1, l1_x2, l1_y2], [l2_x1, l2_y1, l2_x2, l2_y2]
    except Exception as e:
        print(str(e))

def draw_lines(image, gray_img, lines):
    try:
        l1, l2 = compare_lines( lines)
        cv2.line(image, (l1[0], l1[1]), (l1[2], l1[3]), [0, 255, 0], 30)
        cv2.line(image, (l2[0], l2[1]), (l2[2], l2[3]), [0, 255, 0], 30)
    except Exception as e:
        print(str(e))
        pass
    try:
        for coords in lines:
            coords = coords[0]
            try:
                cv2.line(gray_img, (coords[0], coords[1]), (coords[2], coords[3]), [255, 0, 0], 3)


            except Exception as e:
                print(str(e))
    except Exception as e:
        pass

def roi(img, vertices):
    mask = np.zeros_like(img)
    cv2.fillPoly(mask, vertices, 255)
    masked = cv2.bitwise_and(img, mask)
    return masked


def convert_To_gray(image):
    # to gray
    gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # canny
    gray_img = cv2.Canny(gray_img, threshold1=100, threshold2=200)
    # 高斯模糊
    gray_img = cv2.GaussianBlur(gray_img, ksize=(5,5), sigmaX=0)
    # mask img 只取红色区域的数据
    vertices = np.array([[10, 500], [10, 300], [300, 200], [500, 200], [800, 300], [800, 500],
                         ], np.int32)
    gray_img = roi(gray_img, [vertices])
    # 划线
    lines = cv2.HoughLinesP(gray_img, rho=1, theta=np.pi / 180, threshold=180, lines=np.array([]),minLineLength=150, maxLineGap=5)
    draw_lines(image=image, gray_img=gray_img, lines=lines)


def screen_record():
    last_time = time.time()
    while True:
        # 800x600 windowed mode for GTA 5, at the top left position of your main screen.
        # 40 px accounts for title bar. 
        printscreen = np.array(ImageGrab.grab(bbox=(0, 40, 800, 640)))
        print('loop took {} seconds'.format(time.time() - last_time))
        last_time = time.time()
        gray_img = convert_To_gray(printscreen)
        # cv2.imshow('window', gray_img)
        cv2.imshow('window', cv2.cvtColor(printscreen, cv2.COLOR_BGR2RGB))
        if cv2.waitKey(25) & 0xFF == ord('q'):
            cv2.destroyAllWindows()
            break

screen_record()

posted @ 2020-12-16 15:37  Adam_lxd  阅读(285)  评论(0编辑  收藏  举报