LeetCode 329 矩阵中最长增长路径

LeetCode 329 矩阵中最长增长路径

取自官方题解

  • 记忆化深度遍历
class Solution {
    //方向矩阵: 上、下、左、右
    public int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    public int rows, columns;

    public int longestIncreasingPath(int[][] matrix) {
        //边界条件
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return 0;
        }
        rows = matrix.length;
        columns = matrix[0].length;
        //记忆数组
        int[][] memo = new int[rows][columns];
        int ans = 0;
        for (int i = 0; i < rows; ++i) {
            for (int j = 0; j < columns; ++j) {
                ans = Math.max(ans, dfs(matrix, i, j, memo));
            }
        }
        return ans;
    }
    //递归求解子问题
    public int dfs(int[][] matrix, int row, int column, int[][] memo) {
        //取子问题解: 由(row, column)点出发的最长递增路径
        if (memo[row][column] != 0) {
            return memo[row][column];
        }
        //memo[row][column]至少为1,此时该路径下只有点(row, column)
        ++memo[row][column];
        //由点(row, column)向四个方向上搜索
        for (int[] dir : dirs) {
            int newRow = row + dir[0], newColumn = column + dir[1];
            if (//边界控制
                newRow >= 0 && 
                newRow < rows && 
                newColumn >= 0 && 
                newColumn < columns && 
                //满足路径增长条件(增加)
                matrix[newRow][newColumn] > matrix[row][column]) {
                //求解子问题: (row, column)出发的最长递增路径,并存储
                memo[row][column] = Math.max(memo[row][column], dfs(matrix, newRow, newColumn, memo) + 1);
            }
        }
        return memo[row][column];
    }
}
  • 有向无环图拓扑排序求最长路径
class Solution {
    public int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    public int rows, columns;

    public int longestIncreasingPath(int[][] matrix) {
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return 0;
        }
        rows = matrix.length;
        columns = matrix[0].length;
        //出度矩阵(小值点->大值点),用于存储生成的有向图中每个节点的出度数量
        int[][] outdegrees = new int[rows][columns];
        for (int i = 0; i < rows; ++i) {
            for (int j = 0; j < columns; ++j) {
                for (int[] dir : dirs) {
                    int newRow = i + dir[0], newColumn = j + dir[1];
                    if (newRow >= 0 && newRow < rows && newColumn >= 0 && newColumn < columns && 
                    matrix[newRow][newColumn] > matrix[i][j]) {
                        ++outdegrees[i][j];
                    }
                }
            }
        }
        Queue<int[]> queue = new LinkedList<int[]>();
        for (int i = 0; i < rows; ++i) {
            for (int j = 0; j < columns; ++j) {
                //寻找图中所有无出度的节点(每条增长路径的终点)
                if (outdegrees[i][j] == 0) {
                    queue.offer(new int[]{i, j});
                }
            }
        }
        int ans = 0;
        while (!queue.isEmpty()) {
            ++ans;
            int size = queue.size();
            //遍历并删除当前图中每个无出度节点,该过程中同时添加新产生的无出度节点
            for (int i = 0; i < size; ++i) {
                int[] point = queue.poll();
                int row = point[0], column = point[1];
                for (int[] dir : dirs) {
                    int newRow = row + dir[0], newColumn = column + dir[1];
                    if (newRow >= 0 && newRow < rows && newColumn >= 0 && newColumn < columns && 
                    matrix[newRow][newColumn] < matrix[row][column]) {
                        --outdegrees[newRow][newColumn];
                        if (outdegrees[newRow][newColumn] == 0) {
                            queue.offer(new int[]{newRow, newColumn});
                        }
                    }
                }
            }
        }
        return ans;
    }
}
posted @ 2020-07-28 10:53  CodeSPA  阅读(151)  评论(0编辑  收藏  举报