======================= **基础知识** =======================
对称性算法: 信息传递的双方的加解密信息,需要保护的是加解密信息;因为此时加解密的方式是一样的;
非对称性算法(公开密钥加密算法): 信息传递的双方的加解密信息,需要保护的是解密信息,可以公开的是加密信息;此时加解密的方式是不一样的;
举一个最简单的非对称加密方式:
传递一个 <1000 的数字,每次加密方式是 * 91, 然后传递出去; 解密方式是 接收信息 * 11 % 1000;
1 #include<iostream> 2 using namespace std; 3 4 int main() { 5 6 int in_val = 0, pass_val = 0, dec_val = 0; 7 while(cin >> in_val) { 8 cout << "input val is " << in_val 9 << ",then becaom val: " << (pass_val = in_val * 91) << 10 ", final decode val is: " << (dec_val = pass_val * 11 % 1000) << endl; 11 } 12 return 0; 13 }
非对称加密算法过程:(下面的部分涉及到欧拉定理,具体实现逻辑是通过找到两个互为逆元的值,然后分别保存这一对值作为加密解密的钥匙);
1. 任意选择两个大素数 p, q, n = p * q;
2. φ(n) = φ(p) * φ(q) = (p - 1) * (q - 1)
3. 随机选取一个小于φ(n),且与 φ(n) 互质的 e;
4. 通过e 取得其逆元 d 值,使得 e * d ≡ 1 (mode φ(n));
证明:已知 phi_n, e, 求e 的逆元 d;
phi_n = k * e + r ; (k = phi_n / e, r = phi_n % e)
k * e + r ≡ 0 (mod phi_n)
k * e * d * r-1 + r * d * r-1 ≡ 0 (mod phi_n)
k * r-1 + d ≡ 0 (mod phi_n)
d = - k * r-1 (mod phi_n) //将一个较大值问题转换成一个较小值问题;
此时可以得到 加密钥匙(公钥): (e, n); 加密过程 Me % n = C
解密钥匙(私钥): (d, n); 解密过程 Cd % n = M
证明过程:
(Me )d% n = (Me * d )% n = M(k*φ(n) + 1) % n = M(k*φ(n) ) * M % n = M % n = M
======================= **代码演示** =======================
1 //#include "RSA.h" 2 #include <iostream> 3 using namespace std; 4 5 #ifndef DEBUG 6 #define MSG 0 7 #else 8 #define MSG 1 9 #endif 10 11 #define MAX_N 20000 12 int prime[MAX_N] = {0}; 13 14 void init_prime() { 15 for(int i = 2; i < MAX_N; i++) { 16 if(!prime[i]) prime[++prime[0]] = i; 17 for(int j = 1; j <= prime[0]; j++) { 18 if(i * prime[j] >= MAX_N) break; 19 prime[i * prime[j]] = 1; 20 if(!(i % prime[j])) break; 21 } 22 } 23 return; 24 } 25 26 long long gcd(long long a, long long b){ 27 if(!b) return a; 28 return gcd(b, a % b); 29 } 30 31 long long get_inv(long long e, long long phi, long long &x, long long &y){ 32 if(phi == 0) { 33 x = 1, y = 0; 34 return e; 35 } 36 long long r = get_inv(phi ,e % phi, y, x); 37 y -= ( e / phi) * x; 38 return r; 39 } 40 41 long long quick_mod(long long a, long long b, long long c) { 42 long long ans = 1, temp = a; 43 while(b) { 44 if (b & 1) ans = ans * temp % c; 45 temp = temp *temp % c; 46 b >>= 1; 47 } 48 return ans; 49 } 50 int main() 51 { 52 init_prime(); 53 srand(time(0)); 54 55 //1.选取两个大质数; 56 long long p = 0 , q = 0; 57 do{ 58 p = random() % 100 + prime[0] - 99; 59 q = random() % 100 + prime[0] - 99; 60 }while(p == q); 61 62 //2. 获得phi_n; 63 long long n = prime[p] * prime[q], phi_n = (prime[p] - 1) * (prime[q] - 1), 64 e = 0; 65 66 //3.随机选取一个与phi_n 互质,且小于phi_n 的值 67 while(e == 0 || gcd(e, phi_n) != 1) { 68 e = random() % phi_n; 69 } 70 71 //4.根据e 获得逆元d; 72 long long d = 0, y = 0; 73 get_inv(e, phi_n, d, y); 74 d = (((d % phi_n) + phi_n) % phi_n); 75 if(MSG) cout << e << " * " << d << " % " << phi_n << "= " << e * d % phi_n << endl; 76 cout << "( " << e << ", " << n << ")" << endl; 77 cout << "( " << d << ", " << n << ")" << endl; 78 79 //5. 使用密钥 80 long long M = 0, C = 0; 81 82 while(cin >> M) { 83 C = quick_mod(M, e , n); 84 printf("intput M value is %lld, the new RSA encryption %lld, %lld\n", 85 M, C, quick_mod(C, d, n)); 86 } 87 88 return 0; 89 }
======================= **应用场景** =======================
各类的加密传输信息,无密码登录等场景;