======================= 基础知识 =======================
一段连续存储区存储任意数据,包含head,tail(最后一个元素的下一位:因为一般都是采用前开后闭区间,这样 cnt = tail - head);
支持操作有push(队尾入队),pop(队首出队);
先入先出(FIFO);

队列出队,入队多次操作以后,如果没有重复利用先前出队的空间,而队尾空间已经用完,会导致假溢出(队列前有未用空间,但是队尾已经无法插入了),所以可以使用 循环队列 实现重复利用前段空间。如果所有空间都被用了,那就是真溢出了,此时需要动态扩容(有可能用块状链表,hash 链表等方式实现,具体语言实现可能不同,可扩展)

表现形式可以是数组,链表(环形链表,从头出队,从尾入队);

======================= 代码演示 =======================
//循环队列:

 1 class Queue {
 2 public :
 3     Queue(int n = 10) : arr(n), head(0), tail(0), cnt(0) {}
 4 
 5     int size() { return cnt;}
 6     bool empty() { return cnt == 0;}
 7     bool full() { return cnt == arr.size();}
 8 
 9     void push(int x) {
10         if (full()) {
11             cout << "queue full" << endl;
12             return ;
13         }
14         arr[tail++] = x;
15         tail %= arr.size();
16         cnt += 1;
17         return ;
18     } 
19     void pop(){
20         if (empty()) return ;
21         cnt -= 1;
22         head = ++head % arr.size();
23         return ;
24     }
25     int front() {
26         if (empty()) return 0;
27         return arr[head];
28     }
29     void clear() {
30         head = tail = cnt = 0;
31         return ;
32     }
33     void output() {
34         cout << "Queue : ";
35         for (int i = 0, j = head; i < cnt; i++) {
36             cout << arr[j] << " ";
37             j += 1;
38             if (j == arr.size()) j = 0;
39         }
40         cout << endl;
41         return ;
42     }
43 
44 private:
45     int head, tail;
46     int cnt;
47     vector<int> arr;
48 };
循环队列
 1 class MyCircularDeque {
 2     private :
 3         int size;
 4         int front;
 5         int tail;
 6         int *p;
 7 
 8 public:
 9     MyCircularDeque(int k):size(k), front(0), tail(0) {
10         p = (int *) malloc(sizeof(int) * k);
11     }
12     
13     bool insertFront(int value) {
14         if(isFull()) return false;
15         front = (front - 1 + size) % size;
16         *(p + front) = value;
17         len += 1;
18         return true;
19     }
20     
21     bool insertLast(int value) {
22         if(isFull()) return false;
23         *(p + tail) = value;
24         len += 1;
25         tail = (tail + 1) % size;
26         return true;
27     }
28     
29     bool deleteFront() {
30         if(isEmpty()) return false;
31         front = (front + 1) % size;
32         len -= 1;
33         return true;
34     }
35     
36     bool deleteLast() {
37         if(isEmpty()) return false;
38         tail = (tail - 1 + size) % size;
39         len -= 1;
40         return true;
41     }
42     
43     int getFront() {
44         if(isEmpty()) return -1;
45         return *(p + front);
46     }
47     
48     int getRear() {
49         if(isEmpty()) return -1;
50         return *(p + (tail - 1 + size) % size);
51     }
52     
53     bool isEmpty() {
54         return len == 0;
55     }
56     
57     bool isFull() {
58         return len == size;
59     }
60 };
双端循环队列(deque)

 

======================= 经典问题 =======================

1. 设计前中后队列(leetcode1670): 这题目很好的诠释了,复杂的结构 如何通过简单数据结构来 实现:

  1 class FrontMiddleBackQueue {
  2     private:
  3         class DEQUE{
  4             private:
  5                 class Node {
  6                     public:
  7                     Node *pre;
  8                     Node *next;
  9                     int val;
 10                     Node(int v, Node *p = nullptr, Node *n = nullptr) : val(v), pre(p), next(n){};
 11                 };
 12 
 13                 int _size;
 14                 Node *front;
 15                 Node *back;
 16             public:
 17                 bool isEmpty(){
 18                     return _size == 0;
 19                 }
 20                 int size(){
 21                     return _size;
 22                 }
 23                 DEQUE(): _size(0){
 24                     front = new Node(0);
 25                     back = new Node(0);
 26                     front->next = back;
 27                     back->pre = front;
 28                 }
 29                 ~DEQUE() {
 30                     while(front) {
 31                         Node *temp = front;
 32                         front = front->next;
 33                         delete temp;
 34                     }
 35                 }
 36                 void insertFront(int val){
 37                     Node *temp = new Node(val);
 38                     temp->next = front->next;
 39                     front->next = temp;
 40                     temp->pre = temp->next->pre;
 41                     temp->next->pre = temp;
 42                     _size += 1;
 43                     return;
 44                 }
 45                 int popFront(){
 46                     if(isEmpty()) return -1;
 47                     Node* temp = front->next;
 48                     int val = temp->val;
 49                     front->next = temp->next;
 50                     temp->next->pre = temp->pre;
 51                     _size -= 1;
 52                     delete temp;
 53                     return val;
 54                 }
 55                 void insertBack(int val){
 56                     Node *temp = new Node(val);
 57 
 58                     temp->pre = back->pre;
 59                     temp->next = temp->pre->next;
 60                     back->pre = temp;
 61                     temp->pre->next = temp;
 62 
 63                     _size += 1;
 64                     return;
 65                 }
 66                 int popBack(){
 67                     if(isEmpty()) return -1;
 68                     Node *temp = back->pre;
 69                     int val = temp->val;
 70 
 71                     temp->pre->next = temp->next;
 72                     back->pre = temp->pre;
 73 
 74                     _size -= 1;
 75                     return val;
 76                 }
 77 
 78         };
 79         DEQUE front, back;
 80         int size;
 81 public:
 82     FrontMiddleBackQueue():size(0), front(DEQUE()), back(DEQUE()) {}
 83 
 84     bool isEmpty() {
 85         return size == 0;
 86     }
 87 
 88     void adjustFB(){
 89         if(front.size() > back.size()){
 90             int val = front.popBack();
 91             back.insertFront(val);
 92         }
 93         if(back.size() - front.size() > 1){
 94             int val = back.popFront();
 95             front.insertBack(val);
 96         }
 97         return;
 98     }
 99     
100     void pushFront(int val) {
101         front.insertFront(val);
102         size += 1;
103         adjustFB();
104         return;
105     }
106     
107     void pushMiddle(int val) {
108         front.insertBack(val);
109         size += 1;
110         adjustFB();
111         return;
112     }
113     
114     void pushBack(int val) {
115         back.insertBack(val);
116         size += 1;
117         adjustFB();
118         return;
119     }
120     
121     int popFront() {
122         if(isEmpty()) return -1;
123         int ret;
124         if(size == 1) ret = back.popFront();
125         else ret = front.popFront();
126         size -= 1;
127         adjustFB();
128         return ret;
129     }
130     
131     int popMiddle() {
132         if(isEmpty()) return -1;
133         int ret;
134         if(size % 2)  ret = back.popFront();
135         else ret = front.popBack();
136         size -= 1;
137  //       adjustFB();
138         return  ret;
139     }
140     
141     int popBack() {
142         if(isEmpty()) return -1;
143         int ret = back.popBack();
144         size -= 1;
145         adjustFB();
146         return ret;
147     }
148 };
149 
150 /**
151  * Your FrontMiddleBackQueue object will be instantiated and called as such:
152  * FrontMiddleBackQueue* obj = new FrontMiddleBackQueue();
153  * obj->pushFront(val);
154  * obj->pushMiddle(val);
155  * obj->pushBack(val);
156  * int param_4 = obj->popFront();
157  * int param_5 = obj->popMiddle();
158  * int param_6 = obj->popBack();
159  */
简单数据结构实现复杂数据结构

 

2. 灵活运用数据结构自身的性质,来实现一些要求(leetcode143)

 1 /**
 2  * Definition for singly-linked list.
 3  * struct ListNode {
 4  *     int val;
 5  *     ListNode *next;
 6  *     ListNode() : val(0), next(nullptr) {}
 7  *     ListNode(int x) : val(x), next(nullptr) {}
 8  *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 9  * };
10  */
11 class Solution {
12 public:
13     void reorderList(ListNode* head) {
14         deque<ListNode*> dq;
15         ListNode *temp = head;
16         while(temp) {
17             dq.push_back(temp);
18             temp = temp->next;
19         }
20 
21         temp = dq.front();
22         dq.pop_front();
23         while(dq.size() > 1) {
24             temp->next = dq.back();
25             dq.pop_back();
26             temp = temp->next;
27 
28             temp->next = dq.front();
29             dq.pop_front();
30             temp = temp->next;
31         }
32         if(dq.size()) {
33             temp->next = dq.back();
34             temp = temp->next;
35         }
36 
37         temp->next = nullptr;
38         return;
39     }
40 };
deque 实现 排序


======================= 应用场景 =======================

1. cpu 超线程技术(不同于系统的process & thread):利用cpu处理速度更快,增加每个核对应的 任务队列(并不一定越多越好,2个适宜);
(题外话:还有多路cpu(计算结点), 集群 概念)

CPU 超线程技术

 

2. 线程池 的任务队列:

线程池

 

posted on 2021-12-02 22:48  学海一扁舟  阅读(80)  评论(0编辑  收藏  举报