[NOIP校内集训]City(前缀和)

题意

给定一颗基环树,设从环上删一条边,任意两点的距离的最大值为\(val\),求\(val_{min}\)

思路

显然\(val\)有两种来源,一种是以环上某个点为根的子树中选两个点,另一种就是从一颗子树出发到另一颗子树,前者可以\(O(n)\)遍历每颗树得到,对于后者,设:

\(st[i]:\)环上的第\(i\)个点,之后会省略这个数组,请自行理解是点还是序号
\(d[i]:\)以i点为根的子树中离i最远点的距离
\(dis[i]:\)\(st[i+1]\)\(st[i]\)这条边的长度

假设我们选的点为\(i,j\),i与j的距离可以用前缀和表示,设\(s[i]\)表示\(i\)顺时针走到1的距离,\(sum\)为环长,再钦定\(i>j\)

假设我们断开了\(k\)\(k+1\)这条边:

  1. \(i,j\leq k\),它们间的最大距离为\((d[i]+d[j]+s[i]-s[j])\),我们将\(i\)\(j\)分开,为\((d[i]+s[i])+(d[j]-s[j])\)

  2. \(i,j\geq k+1\),同上

  3. \(j\leq k,i\geq k+1\),最大距离为\((d[i]+d[j]+sum-s[i]+s[j])\),同理拆开\((d[i]-s[i])+(d[j]+s[j])+sum\)

从上可以知道只需要知道\((d[i]+s[i])\)\((d[i]-s[i])\)两个值即可。维护\((d[i]+s[i])\)前缀最大值,\((d[i]-s[i])\)后缀最大值解决第三种情况;前两种情况直接维护最大值即可,这里需要注意\(i\)\(j\)不重复。于是枚举删边就可以做到\(O(n)\)

Code

int main()
{
//	freopen("city.in","r",stdin);
//	freopen("city.out","w",stdout);
	read(n);
	for(int i=1;i<=n;++i)
	{
		int x,y;ll z;
		read(x);read(y);read(z);
		add_edge(x,y,z);
		add_edge(y,x,z); 
	}
	sc(1,0);
	for(int i=1;i<=top;++i) dfs(st[i],0);
	for(int i=2;i<=top;++i)
		for(int j=head[st[i]];j;j=edge[j].next)
			if(edge[j].to==st[i-1])
			{
				d[i]=edge[j].dis;
                //实际上这里的d[i]是上面说的dis[i]
				break;
			}
	for(int i=head[st[1]];i;i=edge[i].next) if(edge[i].to==st[top]) d[1]=edge[i].dis;
	for(int i=2;i<=top;++i) s[i]=s[i-1]+d[i];
	sum=s[top]+d[1];
	ll cur=-INF;
	for(int i=1;i<=top;++i)
	{
		if(i!=1) pre[i]=Max(pre[i-1],cur+dis[st[i]][0]+s[i]);
		cur=Max(cur,dis[st[i]][0]-s[i]);
        //dis[st[i]][0]为上面说的d[i]
	}
	cur=-INF;
	for(int i=top;i>=1;--i)
	{
		if(i!=top) suf[i]=Max(suf[i+1],cur+dis[st[i]][0]-s[i]);
		cur=Max(cur,dis[st[i]][0]+s[i]);
	}
	adpremax[0]=-INF;
	for(int i=1;i<=top;++i) adpremax[i]=Max(adpremax[i-1],dis[st[i]][0]+s[i]);
	misufmax[top+1]=-INF;
	for(int i=top;i>=1;--i) misufmax[i]=Max(misufmax[i+1],dis[st[i]][0]-s[i]);
	for(int i=1;i<top;++i)//断(i,i+1) 
	{
		maxx=-INF;
		maxx=Max(maxx,pre[i]);
		maxx=Max(maxx,suf[i+1]);
		maxx=Max(maxx,sum+adpremax[i]+misufmax[i+1]);
		anss=Min(anss,maxx);
	}
	//特判(top,1)
	anss=Min(anss,pre[top]);
	cout<<Max(anss,ans)<<endl;
	return AFO;
}
posted @ 2019-09-23 18:44  擅长平地摔的艾拉酱  阅读(234)  评论(0编辑  收藏  举报
/*取消选中*/