Python内置类型性能分析

Python内置类型性能分析

timeit模块

timeit模块可以用来测试一小段Python代码的执行速度。

class timeit.Timer(stmt='pass',setup='pass',timer=<timer function>)

Timer 是测量小段代码执行速度的类;

stmt参数是要测试的代码语句(statment);

setup参数是运行代码时需要的设置;

timer参数是一个定时器函数,与平台有关。

timeit.Timer.timeit(number=1000000)

Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码的平均耗时,一个float类型的秒数。

list的操作测试

 1 def test1():
 2    l = []
 3    for i in range(1000):
 4       l = l + [i]
 5 def test2():
 6    l = []
 7    for i in range(1000):
 8       l.append(i)
 9 def test3():
10    l = [i for i in range(1000)]
11 def test4():
12    l = list(range(1000))
13 
14 from timeit import Timer
15 
16 t1 = Timer("test1()", "from __main__ import test1")
17 print("concat ",t1.timeit(number=1000), "seconds")
18 t2 = Timer("test2()", "from __main__ import test2")
19 print("append ",t2.timeit(number=1000), "seconds")
20 t3 = Timer("test3()", "from __main__ import test3")
21 print("comprehension ",t3.timeit(number=1000), "seconds")
22 t4 = Timer("test4()", "from __main__ import test4")
23 print("list range ",t4.timeit(number=1000), "seconds")
24 
25 #concat  1.1343220240005394 seconds
26 #append  0.05844592100038426 seconds
27 #comprehension  0.0298581249999188 seconds
28 #list range  0.01225500100008503 seconds

list内置操作的时间复杂度

dict内置操作的时间复杂度

 

posted @ 2018-11-20 22:49  Christina_笔记  阅读(231)  评论(0编辑  收藏  举报