python merge、concat合并数据集
数据规整化:合并、清理、过滤
pandas和python标准库提供了一整套高级、灵活的、高效的核心函数和算法将数据规整化为你想要的形式!
本篇博客主要介绍:
合并数据集:.merge()、.concat()等方法,类似于SQL或其他关系型数据库的连接操作。
合并数据集
1) merge 函数
merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
参数 说明
left 参与合并的左侧DataFrame
right 参与合并的右侧DataFrame
how 连接方式:‘inner’(默认)#交集;还有,‘outer’(并集)、‘left’(左全部,右部分)、‘right’(右全部,左部分)
on 用于连接的列名,必须同时存在于左右两个DataFrame对象中,如果位指定,则以left和right列名的交集作为连接键
left_on 左侧DataFarme中用作连接键的列
right_on 右侧DataFarme中用作连接键的列
left_index 将左侧的行索引用作其连接键
right_index 将右侧的行索引用作其连接键
sort 根据连接键对合并后的数据进行排序,默认为True。有时在处理大数据集时,禁用该选项可获得更好的性能
suffixes 字符串值元组,用于追加到重叠列名的末尾,默认为(‘_x’,‘_y’).例如,左右两个DataFrame对象都有‘data’,则结果中就会出现‘data_x’,‘data_y’
copy 设置为False,可以在某些特殊情况下避免将数据复制到结果数据结构中。默认总是赋值
例子:
df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006], "date":pd.date_range('20130102', periods=6), "city":['Beijing ', 'SH', 'guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '], "age":[23,44,54,32,34,32], "category":['100-A','100-B','110-A','110-C','210-A','130-F'], "price":[1200,np.nan,2133,5433,np.nan,4432]}, columns =['id','date','city','category','age','price']) df Out[46]: id date city category age price 0 1001 2013-01-02 Beijing 100-A 23 1200.0 1 1002 2013-01-03 SH 100-B 44 NaN 2 1003 2013-01-04 guangzhou 110-A 54 2133.0 3 1004 2013-01-05 Shenzhen 110-C 32 5433.0 4 1005 2013-01-06 shanghai 210-A 34 NaN 5 1006 2013-01-07 BEIJING 130-F 32 4432.0 df1=pd.DataFrame({"acct_no":[1001,1002,1003,1004,1005,1006,1007,1008], "gender":['male','female','male','female','male','female','male','female'], "pay":['Y','N','Y','Y','N','Y','N','Y',], "m-point":[10,12,20,40,40,40,30,20]}) df1 Out[48]: acct_no gender pay m-point 0 1001 male Y 10 1 1002 female N 12 2 1003 male Y 20 3 1004 female Y 40 4 1005 male N 40 5 1006 female Y 40 6 1007 male N 30 7 1008 female Y 20 data1 = pd.merge(df,df1,left_on="id",right_on="acct_no") data1 Out[50]: id date city category ... acct_no gender pay m-point 0 1001 2013-01-02 Beijing 100-A ... 1001 male Y 10 1 1002 2013-01-03 SH 100-B ... 1002 female N 12 2 1003 2013-01-04 guangzhou 110-A ... 1003 male Y 20 3 1004 2013-01-05 Shenzhen 110-C ... 1004 female Y 40 4 1005 2013-01-06 shanghai 210-A ... 1005 male N 40 5 1006 2013-01-07 BEIJING 130-F ... 1006 female Y 40 [6 rows x 10 columns]
2)concat函数
在这里展示一种新的连接方法,对应于numpy的concatenate函数,pandas有concat函数
concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=None, copy=True)
参数 说明
objs 参与连接的列表或字典,且列表或字典里的对象是pandas数据类型,唯一必须给定的参数
axis=0 指明连接的轴向,0是纵轴,1是横轴,默认是0
join 指明轴向索引的索引是交集还是并集:‘inner’(交集),‘outer’(并集),默认是‘outer’
join_axis 指明用于其他n-1条轴的索引(层次化索引,某个轴向有多个索引),不执行交并集
keys 与连接对象有关的值,用于形成连接轴向上的层次化索引(外层索引),可以是任意值的列表或数组、元组数据、数组列表(如果将levels设置成多级数组的话)
levels 指定用作层次化索引各级别(内层索引)上的索引,如果设置keys的话
names 用于创建分层级别的名称,如果设置keys或levels的话
verify_integrity 检查结果对象新轴上的重复情况,如果发横则引发异常,默认False,允许重复
ignore_index 不保留连接轴上的索引,产生一组新索引range(total_length)
例子:
pd.concat([df,df1])#默认并集、纵向连接 Out[57]: acct_no age category city ... id m-point pay price 0 NaN 23.0 100-A Beijing ... 1001.0 NaN NaN 1200.0 1 NaN 44.0 100-B SH ... 1002.0 NaN NaN NaN 2 NaN 54.0 110-A guangzhou ... 1003.0 NaN NaN 2133.0 3 NaN 32.0 110-C Shenzhen ... 1004.0 NaN NaN 5433.0 4 NaN 34.0 210-A shanghai ... 1005.0 NaN NaN NaN 5 NaN 32.0 130-F BEIJING ... 1006.0 NaN NaN 4432.0 0 1001.0 NaN NaN NaN ... NaN 10.0 Y NaN 1 1002.0 NaN NaN NaN ... NaN 12.0 N NaN 2 1003.0 NaN NaN NaN ... NaN 20.0 Y NaN 3 1004.0 NaN NaN NaN ... NaN 40.0 Y NaN 4 1005.0 NaN NaN NaN ... NaN 40.0 N NaN 5 1006.0 NaN NaN NaN ... NaN 40.0 Y NaN 6 1007.0 NaN NaN NaN ... NaN 30.0 N NaN 7 1008.0 NaN NaN NaN ... NaN 20.0 Y NaN [14 rows x 10 columns] pd.concat([df,df1],ignore_index = True)#生成纵轴上的并集,索引会自动生成新的一列 Out[58]: acct_no age category city ... id m-point pay price 0 NaN 23.0 100-A Beijing ... 1001.0 NaN NaN 1200.0 1 NaN 44.0 100-B SH ... 1002.0 NaN NaN NaN 2 NaN 54.0 110-A guangzhou ... 1003.0 NaN NaN 2133.0 3 NaN 32.0 110-C Shenzhen ... 1004.0 NaN NaN 5433.0 4 NaN 34.0 210-A shanghai ... 1005.0 NaN NaN NaN 5 NaN 32.0 130-F BEIJING ... 1006.0 NaN NaN 4432.0 6 1001.0 NaN NaN NaN ... NaN 10.0 Y NaN 7 1002.0 NaN NaN NaN ... NaN 12.0 N NaN 8 1003.0 NaN NaN NaN ... NaN 20.0 Y NaN 9 1004.0 NaN NaN NaN ... NaN 40.0 Y NaN 10 1005.0 NaN NaN NaN ... NaN 40.0 N NaN 11 1006.0 NaN NaN NaN ... NaN 40.0 Y NaN 12 1007.0 NaN NaN NaN ... NaN 30.0 N NaN 13 1008.0 NaN NaN NaN ... NaN 20.0 Y NaN [14 rows x 10 columns] pd.concat([df,df1],axis = 1,join = 'inner')#横向取交集,注意该方法对对象表中有重复索引时失效 Out[59]: id date city category ... acct_no gender pay m-point 0 1001 2013-01-02 Beijing 100-A ... 1001 male Y 10 1 1002 2013-01-03 SH 100-B ... 1002 female N 12 2 1003 2013-01-04 guangzhou 110-A ... 1003 male Y 20 3 1004 2013-01-05 Shenzhen 110-C ... 1004 female Y 40 4 1005 2013-01-06 shanghai 210-A ... 1005 male N 40 5 1006 2013-01-07 BEIJING 130-F ... 1006 female Y 40 [6 rows x 10 columns] pd.concat([df,df1],axis = 1,join = 'outer')#横向取并集,注意该方法对对象表中有重复索引时失效 Out[60]: id date city category ... acct_no gender pay m-point 0 1001.0 2013-01-02 Beijing 100-A ... 1001 male Y 10 1 1002.0 2013-01-03 SH 100-B ... 1002 female N 12 2 1003.0 2013-01-04 guangzhou 110-A ... 1003 male Y 20 3 1004.0 2013-01-05 Shenzhen 110-C ... 1004 female Y 40 4 1005.0 2013-01-06 shanghai 210-A ... 1005 male N 40 5 1006.0 2013-01-07 BEIJING 130-F ... 1006 female Y 40 6 NaN NaT NaN NaN ... 1007 male N 30 7 NaN NaT NaN NaN ... 1008 female Y 20 [8 rows x 10 columns]
3)combine_first函数(含有重叠索引的缺失值填补)
#全部索引重叠
a = pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index = ['a','b','c','d','e','f']) a Out[62]: a NaN b 2.5 c NaN d 3.5 e 4.5 f NaN dtype: float64 b = pd.Series(np.arange(len(a)),index = ['a','b','c','d','e','f']) b Out[64]: a 0 b 1 c 2 d 3 e 4 f 5 dtype: int32 a.combine_first(b)#利用b填补了a的空值 Out[65]: a 0.0 b 2.5 c 2.0 d 3.5 e 4.5 f 5.0 dtype: float64
#部分索引重叠 a = pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index = ['g','b','c','d','e','f']) a Out[67]: g NaN b 2.5 c NaN d 3.5 e 4.5 f NaN dtype: float64 a.combine_first(b)#部分索引重叠 Out[68]: a 0.0 b 2.5 c 2.0 d 3.5 e 4.5 f 5.0 g NaN dtype: float64