对分类特征做编码

作用:将分类型数据转换成连续的数值型变量。即是对不连续的数字或者文本进行编号。

import pandas as pd
#先创建一个数据框(包含缺失值)
df = pd.DataFrame({'auth':['spring','summer','fall','spring'],
                   'sply':['a','c','a','b'],
                   'name':['zhangsan','lisi','xiaohua','xiaomei']})
df
Out[124]: 
     auth sply      name
0  spring    a  zhangsan
1  summer    c      lisi
2    fall    a   xiaohua
3  spring    b   xiaomei

categorical_name = ['auth','sply','name']

#定义一个循环函数,处理分类型特征,进行标签编码
def categorical_preprocessing(dataset,categorical_feature):
    '''
    param:
        dataset:DataFrame,输入的数据集
        categorical_feature:list,分类特征列名
    '''
    for feature in categorical_feature:
        set_feature = set(dataset[feature])#将特征映射到集合中
        dic_feature = {}
        for i ,feat in enumerate(set_feature):
            dic_feature[feat] = i
        dataset[feature] = dataset[feature].map(dic_feature)
    dataset = pd.get_dummies(dataset,columns=categorical_feature)
return dataset #处理分类特征编码 dataset = categorical_preprocessing(df,categorical_name)
#分类变量编码结果
dataset
Out[74]: 
   auth_0  auth_1  auth_2  sply_0   ...    name_0  name_1  name_2  name_3
0       0       1       0       0   ...         1       0       0       0
1       0       0       1       0   ...         0       0       1       0
2       1       0       0       0   ...         0       0       0       1
3       0       1       0       1   ...         0       1       0       0

补充:

标签编码完成后一般都需要再进行一次one-hot编码,变成只包含0和1的数据。

如果变量含有顺序,如:优、良、差。可以省略one-hot编码。

posted @ 2018-12-25 14:24  Christina_笔记  阅读(1152)  评论(0编辑  收藏  举报