Python3学习笔记(3)——高级特性(迭代、列表生成式)
迭代
如果给定一个list或tuple,我们可以通过for
循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。
默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values()
,如果要同时迭代key和value,可以用for k, v in d.items()
。
如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:
1 >>> from collections import Iterable 2 >>> isinstance('abc', Iterable) # str是否可迭代 3 True 4 >>> isinstance([1,2,3], Iterable) # list是否可迭代 5 True 6 >>> isinstance(123, Iterable) # 整数是否可迭代 7 False
如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate
函数可以把一个list变成索引-元素对,这样就可以在for
循环中同时迭代索引和元素本身:
1 >>> for i, value in enumerate(['A', 'B', 'C']): 2 ... print(i, value) 3 ... 4 0 A 5 1 B 6 2 C
小结
任何可迭代对象都可以作用于for
循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for
循环。
列表生成式
列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
1 >>> [m + n for m in 'ABC' for n in 'XYZ'] 2 ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
1 >>> import os # 导入os模块,模块的概念后面讲到 2 >>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录 3 ['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']
for
循环其实可以同时使用两个甚至多个变量,比如dict
的items()
可以同时迭代key和value:
1 >>> d = {'x': 'A', 'y': 'B', 'z': 'C' } 2 >>> for k, v in d.items(): 3 ... print(k, '=', v) 4 ... 5 y = B 6 x = A 7 z = C
1 >>> d = {'x': 'A', 'y': 'B', 'z': 'C' } 2 >>> [k + '=' + v for k, v in d.items()] 3 ['y=B', 'x=A', 'z=C']
1 >>> L = ['Hello', 'World', 'IBM', 'Apple'] 2 >>> [s.lower() for s in L] 3 ['hello', 'world', 'ibm', 'apple']
如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()
方法,所以列表生成式会报错:
使用内建的isinstance
函数可以判断一个变量是不是字符串:
1 >>> x = 'abc' 2 >>> y = 123 3 >>> isinstance(x, str) 4 True 5 >>> isinstance(y, str) 6 False
小结
运用列表生成式,可以快速生成list,可以通过一个list推导出另一个list,而代码却十分简洁。
生成器
如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
generator保存的是算法,每次调用next(g)
,就计算出g
的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration
的错误。
如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator:
1 >>> f = fib(6) 2 >>> f 3 <generator object fib at 0x104feaaa0>
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。