Apache Druid0.15.0安装方式
Druid0.15.0概述
Druid是一个用于大数据实时查询和分析的高容错、高性能开源分布式系统,旨在快速处理大规模的数据,并能够实现快速查询和分析。尤其是当发生代码部署、机器故障以及其他产品系统遇到宕机等情况时,Druid仍能够保持100%正常运行。创建Druid的最初意图主要是为了解决查询延迟问题,Druid提供了以交互方式访问数据的能力,并权衡了查询的灵活性和性能而采取了特殊的存储格式。值得一提的是,Druid0.15开始支持SQL查询,而在之前的版本是不支持SQL查询的,只有json才能查询。
特性
- 为局部嵌套数据结构提供列式存储格式;
- 为快速过滤做索引;
- 实时摄取和查询;
- 高容错的分布式体系架构等。
业务场景
- 需要交互式聚合和快速探究大量数据时;
- 需要实时查询分析时;
- 对数据尤其是大数据进行实时分析时,在溢米大数据应用场景中,以上三个特性和天眼五期需求非常契合,而Druid恰好可与悟空结合实现实时入库。目前Spark+CarbonData的方式随着数据量的增加,查询速度变得缓慢,Druid是一个不错的替代方案;
- 需要一个高可用、高容错、高性能数据库时。
1 集群规划
- Master包含Coordinator和Overlord,4核16G*2;
- data包含Historical和MiddleManager,16核64G*3;
- query包含Broker和Router,4核16G*1。
1.1 Hadoop配置文件设置
本次安装使用HDFS作为存储,进入3个data节点,/data1/druid/druid-0.15.0/conf/druid/cluster/_common目录,软链到对应hadoop的配置文件目录,此步骤为了识别Hadoop HA模式,否则深度存储使用HDFS无法识别路径。
ln -s /usr/hdp/2.6.5.0-292/hadoop/conf hadoop-xml
1.2 jdk1.8安装,此处省略。
1.3 data节点作为HDFS的datanode,此处省略
1.4 common配置
这个配置可以打印druid系统的运行日志,方便后续定位问题,文件路径和文件名可修改
- log4j2.xml配置
<Configuration status="WARN"> <Properties> <Property name="log.path">/data1/druid/log</Property> </Properties> <Appenders> <Console name="Console" target="SYSTEM_OUT"> <PatternLayout pattern="%d{ISO8601} %p [%t] %c - %m%n"/> </Console> <File name="log" fileName="${log.path}/one.log" append="false"> <PatternLayout pattern="[%d{yyyy-MM-dd HH:mm:ss:SSS}] [%p] - %l - %m%n"/> </File> <RollingFile name="RollingFileInfo" fileName="${log.path}/druid-data.log" filePattern="${log.path}/druid-data-%d{yyyy-MM-dd}-%i.out"> <ThresholdFilter level="info" onMatch="ACCEPT" onMismatch="DENY"/> <PatternLayout pattern="[%d{yyyy-MM-dd HH:mm:ss:SSS}] [%p] - %l - %m%n"/> <Policies> <TimeBasedTriggeringPolicy modulate="true" interval="1"/> <SizeBasedTriggeringPolicy size="100 MB"/> </Policies> </RollingFile> </Appenders> <Loggers> <Root level="info"> <AppenderRef ref="Console"/> <appender-ref ref="RollingFileInfo"/> <appender-ref ref="log"/> </Root> </Loggers> </Configuration>
- common.runtime.properties配置, druid.host改成druid所在机器的hostname,这个配置文件是全局的配置文件,对应的参数有相应的解释。
druid.extensions.loadList=["druid-kafka-eight", "druid-histogram", "druid-datasketches", "mysql-metadata-storage","druid-hdfs-storage","druid-kafka-extraction-namespace","druid-kafka-indexing-service"] druid.extensions.directory=/data1/druid/druid-0.15.0/extensions # If you have a different version of Hadoop, place your Hadoop client jar files in your hadoop-dependencies directory # and uncomment the line below to point to your directory. druid.extensions.hadoopDependenciesDir=/data1/druid/druid-0.15.0/hadoop-dependencies # # Hostname # druid.host=bd-prod-slave06 # # Logging # Log all runtime properties on startup. Disable to avoid logging properties on startup: druid.startup.logging.logProperties=true # # Zookeeper # druid.zk.service.host=bd-prod-master01:2181,bd-prod-master02:2181,bd-prod-slave01:2181 druid.zk.paths.base=/druid # # Metadata storage # # For Derby server on your Druid Coordinator (only viable in a cluster with a single Coordinator, no fail-over): # druid.metadata.storage.type=derby # druid.metadata.storage.connector.connectURI=jdbc:derby://localhost:1527/var/druid/metadata.db;create=true # druid.metadata.storage.connector.host=localhost # druid.metadata.storage.connector.port=1527 # For MySQL (make sure to include the MySQL JDBC driver on the classpath): druid.metadata.storage.type=mysql druid.metadata.storage.connector.connectURI=jdbc:mysql://bd-prod-master01:3306/druid?useSSL=false&useUnicode=true&characterEncoding=UTF-8 druid.metadata.storage.connector.user=user druid.metadata.storage.connector.password=password # For PostgreSQL: #druid.metadata.storage.type=postgresql #druid.metadata.storage.connector.connectURI=jdbc:postgresql://db.example.com:5432/druid #druid.metadata.storage.connector.user=... #druid.metadata.storage.connector.password=... # # Deep storage # # For local disk (only viable in a cluster if this is a network mount): # druid.storage.type=local # druid.storage.storageDirectory=var/druid/segments # For HDFS: druid.storage.type=hdfs druid.storage.storageDirectory=hdfs://bd-prod/druid/segments # For S3: #druid.storage.type=s3 #druid.storage.bucket=your-bucket #druid.storage.baseKey=druid/segments #druid.s3.accessKey=... #druid.s3.secretKey=... # # Indexing service logs # # For local disk (only viable in a cluster if this is a network mount): # druid.indexer.logs.type=file # druid.indexer.logs.directory=var/druid/indexing-logs # For HDFS: druid.indexer.logs.type=hdfs druid.indexer.logs.directory=hdfs://bd-prod/druid/indexing-logs # For S3: #druid.indexer.logs.type=s3 #druid.indexer.logs.s3Bucket=your-bucket #druid.indexer.logs.s3Prefix=druid/indexing-logs # # Service discovery # druid.selectors.indexing.serviceName=druid/overlord druid.selectors.coordinator.serviceName=druid/coordinator # # Monitoring # druid.monitoring.monitors=["org.apache.druid.java.util.metrics.JvmMonitor"] druid.emitter=noop druid.emitter.logging.logLevel=info # Storage type of double columns # ommiting this will lead to index double as float at the storage layer druid.indexing.doubleStorage=double # # Security # druid.server.hiddenProperties=["druid.s3.accessKey","druid.s3.secretKey","druid.metadata.storage.connector.password"] # # SQL # druid.sql.enable=true # # Lookups # druid.lookup.enableLookupSyncOnStartup=false
2.data节点
进入data节点,修改相应的druid.host;
2.1 historical
historical主要负责加载已经生成好的数据文件以提供数据查询。
- /data1/druid/druid-0.15.0/conf/druid/cluster/data/historical/jvm.config
-server -Xms8g -Xmx8g -XX:MaxDirectMemorySize=12g -XX:+ExitOnOutOfMemoryError -Duser.timezone=UTC+0800 -Dfile.encoding=UTF-8 -Djava.io.tmpdir=/tmp -Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
- /data1/druid/druid-0.15.0/conf/druid/cluster/data/historical/runtime.properties
druid.service=druid/historical druid.plaintextPort=9088 druid.segmentCache.numLoadingThreads=16 # HTTP server threads druid.server.http.numThreads=60 # Processing threads and buffers druid.processing.buffer.sizeBytes=500000000 druid.processing.numMergeBuffers=4 druid.processing.numThreads=16 druid.processing.tmpDir=/data1/druid/processing # Segment storage druid.segmentCache.locations=[{"path":"/data1/druid/segment-cache","maxSize":300000000000}] druid.server.maxSize=300000000000 # Query cache druid.historical.cache.useCache=true druid.historical.cache.populateCache=true druid.cache.type=caffeine druid.cache.sizeInBytes=256000000
2.2 middleManager
middleManager主要负责索引服务的工作节点,负责接收Coordinator分配的任务,然后启动容器完成具体任务。
- /data1/druid/druid-0.15.0/conf/druid/cluster/data/middleManager/jvm.config
-server -Xms128m -Xmx128m -XX:+ExitOnOutOfMemoryError -Duser.timezone=UTC+0800 -Dfile.encoding=UTF-8 -Djava.io.tmpdir=/tmp -Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
- /data1/druid/druid-0.15.0/conf/druid/cluster/data/middleManager/runtime.properties
druid.service=druid/middleManager druid.plaintextPort=8091 # Number of tasks per middleManager druid.worker.capacity=4 # Task launch parameters druid.indexer.runner.javaOpts=-server -Xms1g -Xmx1g -XX:MaxDirectMemorySize=1g -Duser.timezone=UTC+0800 -Dfile.encoding=UTF-8 -XX:+ExitOnOutOfMemoryError -Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager druid.indexer.task.baseTaskDir=/data1/druid/task # HTTP server threads druid.server.http.numThreads=60 # Processing threads and buffers on Peons druid.indexer.fork.property.druid.processing.numMergeBuffers=2 druid.indexer.fork.property.druid.processing.buffer.sizeBytes=100000000 druid.indexer.fork.property.druid.processing.numThreads=4 # Hadoop indexing druid.indexer.task.hadoopWorkingPath=/data1/druid/hadoop-tmp
2.3 启动命令
nohup ./bin/start-cluster-data-server >/dev/null 2>&1 &
3 master节点
进入master节点,修改common的druid.host选项;
3.1 coordinator-overlord
负责Historical节点的数据负载均衡,以及通过规则管理数据生命周期,也是索引服务的主节点,对外负责接收任务请求,对内负责将任务分解并下发到从节点即MiddleManager上。
- /data1/druid/druid-0.15.0/conf/druid/cluster/master/coordinator-overlord/jvm.config
-server -Xms12g -Xmx12g -XX:+ExitOnOutOfMemoryError -XX:+UseG1GC -Duser.timezone=UTC+0800 -Dfile.encoding=UTF-8 -Djava.io.tmpdir=/tmp -Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager -Dderby.stream.error.file=/data1/druid/derby.log
- /data1/druid/druid-0.15.0/conf/druid/cluster/master/coordinator-overlord/runtime.properties
druid.service=druid/coordinator druid.plaintextPort=9181 druid.coordinator.startDelay=PT10S druid.coordinator.period=PT5S # Run the overlord service in the coordinator process druid.coordinator.asOverlord.enabled=true druid.coordinator.asOverlord.overlordService=druid/overlord druid.indexer.queue.startDelay=PT5S druid.indexer.runner.type=remote druid.indexer.storage.type=metadata
3.2 启动命令
nohup ./bin/start-cluster-master-no-zk-server >/dev/null 2>&1 &
4 query节点
进入query节点,修改common的druid.host选项;
4.1 broker
broker主要对外提供数据查询服务,查询数据时,读取zookeeper上的元数据和Router,并合并查询结果数据。
- /data1/druid/druid-0.15.0/conf/druid/cluster/query/broker/jvm.config
-server -Xms12g -Xmx12g -XX:MaxDirectMemorySize=6g -XX:+ExitOnOutOfMemoryError -Duser.timezone=UTC+0800 -Dfile.encoding=UTF-8 -Djava.io.tmpdir=/tmp -Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
- /data1/druid/druid-0.15.0/conf/druid/cluster/query/broker/runtime.properties
druid.service=druid/broker druid.plaintextPort=8182 # HTTP server settings druid.server.http.numThreads=60 # HTTP client settings druid.broker.http.numConnections=50 druid.broker.http.maxQueuedBytes=10000000 # Processing threads and buffers druid.processing.buffer.sizeBytes=500000000 druid.processing.numMergeBuffers=6 druid.processing.numThreads=1 druid.processing.tmpDir=/data1/druid/processing # Query cache disabled -- push down caching and merging instead druid.broker.cache.useCache=true druid.broker.cache.populateCache=true
4.2 router
router顾名思义,主要是按照规则将查询路由到各个Broker上。
- /data1/druid/druid-0.15.0/conf/druid/cluster/query/router/jvm.config
-server -Xms1g -Xmx1g -XX:+UseG1GC -XX:MaxDirectMemorySize=256m -XX:+ExitOnOutOfMemoryError -Duser.timezone=UTC+0800 -Dfile.encoding=UTF-8 -Djava.io.tmpdir=/tmp -Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager
- /data1/druid/druid-0.15.0/conf/druid/cluster/query/router/runtime.properties
druid.service=druid/router druid.plaintextPort=8888 # HTTP proxy druid.router.http.numConnections=50 druid.router.http.readTimeout=PT5M druid.router.http.numMaxThreads=100 druid.server.http.numThreads=100 # Service discovery druid.router.defaultBrokerServiceName=druid/broker druid.router.coordinatorServiceName=druid/coordinator # Management proxy to coordinator / overlord: required for unified web console. druid.router.managementProxy.enabled=true
4.3 启动命令
nohup ./bin/start-cluster-query-server >/dev/null 2>&1 &
5 总结
Druid作为OLAP的新秀,在实时入库和预聚合上表现非常优秀,而且可以和Flink结合,作为flink的下游数据存储点,是一个非常不错的选择,而且新版的特性开始支持SQL,相信在未来一定能得到大力推广,下一期写一下有关Druid的实时入库操作。