[SRM] 17

qwq 怎么就17了

 

A.

对于待操作数列,所有的两个操作在宏观似乎都不会改变大体顺序

(至于操作2交换奇偶位数字:奇偶分离就行了)

那么定义 s1 s2 分别为奇数列和偶数列的起点(奇数和偶数自己是不会改变相对位置的)

让 s1 s2 储存每次操作一的偏移量

最后构造数列

 1 #include<cstdio>
 2 #include<iostream>
 3 #define maxn 1000000
 4 using namespace std;
 5 
 6 int ans[maxn],s1,s2,n,m,cnt,cnt2;
 7 
 8 int main(){
 9     scanf("%d%d",&n,&m);
10     
11     s1 = 1,s2 = 2;
12     
13     for(int i = 1;i <= m;i++){
14         scanf("%d",&cnt);
15         
16         if(cnt%2){
17             scanf("%d",&cnt2);
18             s1 += cnt2;
19             s2 += cnt2;
20             if(s1 <= 0) s1 += n;
21             if(s1 > n) s1 -= n;
22             if(s2 <= 0) s2 += n;
23             if(s2 > n) s2 -= n;
24         }else{
25             if(s1 % 2) s1++;
26             else s1--;
27             if(s2 % 2) s2++;
28             else s2--;
29         }
30     }
31     
32     int i = s1,cnt = 1;
33     while(!(i == s1 && cnt != 1)){
34         ans[i] = cnt;
35         i += 2;
36         cnt += 2;
37         if(i > n) i -= n;
38     }
39     
40     i = s2,cnt = 2;
41     while(!(i == s2 && cnt != 2)){
42         ans[i] = cnt;
43         i += 2;
44         cnt += 2;
45         if(i > n) i -= n;
46     }
47     
48     for(int i = 1;i <= n;i++){
49         printf("%d ",ans[i]);
50     }
51     
52     return 0;
53 } 
A

 

B.

看了看CF的官方Editorial,二分原来是叫 Binary Search,学习了

那么,二分k秒后的最小值和k秒后的最大值

为了防止不会漏解把二分最大值嵌在二分最小值里

http://codeforces.com/blog/entry/44821

qwq感谢CZL的标程,写得非常对称!

 1 #include<cstdio>
 2 #include<iostream>
 3 #define maxn 1000000
 4 using namespace std;
 5 
 6 long long k,lowpool,uppool,cnt1,n,arr[maxn],maxx,minn = 0x3f3f3f3f,L,R,L2,R2,mid,ans = 0x3f3f3f3f;
 7 bool GG,GG2;
 8 
 9 int main(){
10     scanf("%I64d%I64d",&n,&k);
11     for(int i = 1;i <= n;i++){
12         scanf("%I64d",&arr[i]);
13         maxx = max(maxx,arr[i]),
14         minn = min(minn,arr[i]);
15     }
16     
17     L = minn,R = maxx;
18     GG = false;
19     while(!GG){
20         mid = (L+R+1)/2;
21         if(L == R) GG = true;
22         lowpool = uppool = cnt1 = 0;
23         
24         for(int i = 1;i <= n;i++) lowpool += max(0,mid-arr[i]),uppool += max(0,arr[i]-mid),cnt1 += arr[i]<=mid;
25         
26         if(lowpool > k || lowpool >uppool){ R = mid-1; continue;}
27         else L = mid;
28         
29         if(lowpool == uppool && lowpool <= k) return puts("0"),0;
30         
31         L2 = mid+1,R2 = maxx;
32         
33         cnt1 = min(k,cnt1-1+lowpool);
34         
35         GG2 = false;
36         while(!GG2){
37             mid = (L2+R2)/2;
38             if(L2 == R2) GG2 = true;
39             
40             uppool = 0;
41             for(int i = 1;i <= n;i++) uppool += max(arr[i]-mid,0);
42             
43             if(uppool > cnt1 || uppool > k){L2 = mid+1;continue;}
44             else R2 = mid;
45             
46             ans = min(ans,mid-L);
47         }
48     }
49     
50     printf("%I64d",ans);
51     
52     return 0;
53 }
二分...

 

C.

只限定了树的直径和树的高

那就简单了,最低限度满足条件即可

首先画一条长度为D的多段线,那么一个典型的情况是:树根 1 在中点,将该多段线打折则每边的长度为 D/2

这是临界点,此时树高为 H

那么我们就知道了:如果 H * 2 < D 则必然无解(怎么打折都会有一边超过预测 H )

那么我们只要在多段线上取一个点定为 1 就行了,接下来就是处理多余的结点(D+1 ~ n )

(解释起来真复杂) 

最简单的方法就是把多余节点一个个挂在深度第二的点当子节点

(有那么点画同分异构体的感觉)

既然这题的限制如此之少,又没有什么保证 既然这题出自CF

就要往死里加特判,不要太相信自己程序的通用度

特判见代码

 1 #include<cstdio>
 2 #include<iostream>
 3 using namespace std;
 4 
 5 int n,D,H,pre[1000000];
 6 
 7 int main(){
 8     scanf("%d%d%d",&n,&D,&H);
 9     
10     if(H*2 < D || H > D || D == 1 || n-1 < D || n-1 < H) cout << -1;
11     else{
12         if(H < D){
13             
14             for(int i = 2;i <= H+1;i++){
15                 pre[i] = i-1;
16             }
17             
18             pre[H+2] = 1;
19             for(int i = H+3;i <= D+1;i++){
20                 pre[i] = i-1;
21             }
22             
23             for(int i = 2;i <= n;i++){
24                 if(!pre[i]) pre[i] = H;
25             }
26             
27         }else{
28             
29             for(int i = 2;i <= H+1;i++){
30                 pre[i] = i-1;
31             }
32             
33             for(int i = 2;i <= n;i++){
34                 if(!pre[i]) pre[i] = H;
35             }
36             
37         }
38         for(int i = 2;i <= n;i++)
39         printf("%d %d\n",pre[i],i);
40     }
41     
42     
43     
44     return 0;
45 } 
重构代码把D == 1给忘了然后就FST了qwq

 

posted @ 2017-09-03 13:26  μSsia  阅读(204)  评论(0编辑  收藏  举报