String Painter, Chengdu 2008, LA4394

题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2395

题目大意:给定两个长度相等,只有小写字母组成的字符串s和t,每步可以把s的一个连续字串“刷“成同一个字母,问至少需要多少步才能把s变成t。比如:s = bbbbbbb, t = aaabccb,最少需要两步可实现将s变成t:bbbbbbb --> aaabbbb --> aaabccb。(字符串长度不超过100)

题解:由于题目历史较为久远,网上鲜有关于此题的题解。以下内容仅个人YY之作,难登大雅之堂。

初见此题有DP的即视感,由于”刷“这个操作随意性强,没有左右的顺序,因此排除一般的线性DP,考虑区间DP。

我认为DP难度在于选择状态,而状态的选取通常与题目的特殊性质紧密相连。而构造状态的技巧在于,考虑怎样的大状态能由小状态更新过来,更新方法与题目性质挂钩

首先预处理出p[l][r][ch]对于s1(终状态)区间[l,r]上底色为ch的情况下,最少需要几步操作变为s1上的对应状态。

    p[l][r][ch] = p[l + 1][r - 1][ch](s1[l] == ch)

    p[l][r][ch] = min{p[l][k][s1[l]] + p[k + 1][j][ch] + 1} (s1[l] != ch)

f[l][r]表示从l到r这段区间,由s2变为s1需要多少步操作。与题目中”刷”的操作挂钩,考虑从l开始刷k个格子全部变为s1[l],这样[l,k]上已经涂满了底色s1[l],后续操作数由p[l][k][s1[l]]转移。

    f[l][r] = f[l + 1][r](s1[l] == s2[l])

    f[l][r] = min{p[l][r][s1[l]] + f[k + 1][r] + 1} (s1[l] != s2[l])

时间复杂度O(len*len*len*26),以为会T,没想到跑得还挺快的…

 1 //By Ro_mantic 2015-11-04
 2 #include <cstdio>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <ctime>
 6 #include <cmath>
 7 #include <cctype>
 8 #include <climits>
 9 #include <string>
10 #include <algorithm>
11 using namespace std;
12 
13 const int MaxN = 100;
14 char s1[MaxN + 5], s2[MaxN + 5];
15 int len, len1, len2, Minn, p[MaxN + 5][MaxN + 5][MaxN],
16     f[MaxN + 5][MaxN + 5];
17 
18 void Prepare()
19 {
20     len1 = strlen(s1);
21     for (int i = 0; i <= len1 - 1; i++) 
22         for (int j = 'a'; j <= 'z'; j++)
23             if (s1[i] == j) p[i][i][j] = 0; 
24                 else p[i][i][j] = 1;
25     for (int len = 2; len <= len1; len++)
26         for (int l = 0; l <= len1 - len; l++) 
27             for (int ch = 'a'; ch <= 'z'; ch++)
28             {
29                 int r = l + len - 1;
30                 if (s1[l] == ch) p[l][r][ch] = p[l + 1][r][ch];
31                     else 
32                     {
33                         Minn = p[l + 1][r][ch] + 1;
34                         for (int k = l + 1; k <= r; k++)
35                             Minn = min(p[l + 1][k][s1[l]] + p[k + 1][r][ch] + 1, Minn);
36                         p[l][r][ch] = Minn;
37                     }
38             }
39     //printf("%d\n", p[0][8]['a']);
40 }
41 
42 void Solve()
43 {
44     len1 = strlen(s1);    
45     for (int i = 0; i <= len1 - 1; i++) 
46         if (s1[i] == s2[i]) f[i][i] = 0; else f[i][i] = 1; 
47     for (int len = 2; len <= len1; len++)
48         for (int l = 0; l <= len1 - len; l++)
49         {
50             int r = l + len - 1;
51             if (s1[l] == s2[l]) f[l][r] = f[l + 1][r];
52             else
53             {
54                 Minn = f[l + 1][r] + 1;
55                 for (int k = l + 1; k <= r; k++)
56                     Minn = min(p[l + 1][k][s1[l]] + f[k + 1][r] + 1, Minn);
57                 f[l][r] = Minn;
58             }
59         }
60     printf("%d\n", f[0][len1 - 1]);
61 }
62 
63 int main()
64 {
65     while (~scanf("%s", s2))
66     {
67         scanf("%s", s1);
68         Prepare();
69         Solve();
70     }
71 }
View Code

 

posted @ 2015-11-04 21:29  Ro_mantic  阅读(205)  评论(0编辑  收藏  举报