线段树&&线段树的创建线段树的查询&&单节点更新&&区间更新
线段树
- 实现问题:常用于求数组区间最小值
- 时间复杂度:(1).建树复杂度:nlogn。(2).线段树算法复杂度:logn
什么是线段树?
- 叶子节点是原始组数arr中的元素
- 非叶子节点代表它的所有子孙叶子节点所在区间的最小值
例如:数组[2, 5, 1, 4, 9, 3]可以构造如下的二叉树(背景为白色表示叶子节点,非叶子节点的值是其对应数组区间内的最小值,例如根节点表示数组区间arr[0...5]内的最小值是1)。
线段树的创建
- 实现原理:定义包含n个节点的线段树 SegTreeNode segTree[n],segTree[0]表示根节点。那么对于节点segTree[i],它的左孩子是segTree[2i+1],右孩子是segTree[2i+2]。
const int MAXNUM = 1000;
struct SegTreeNode
{
int val;
}segTree[MAXNUM];//定义线段树
/*
功能:构建线段树
root:当前线段树的根节点下标
arr: 用来构造线段树的数组
istart:数组的起始位置
iend:数组的结束位置
*/
void build(int root, int arr[], int istart, int iend)
{
if(istart == iend)//叶子节点
segTree[root].val = arr[istart];
else
{
int mid = (istart + iend) / 2;
build(root*2+1, arr, istart, mid);//递归构造左子树
build(root*2+2, arr, mid+1, iend);//递归构造右子树
//根据左右子树根节点的值,更新当前根节点的值
segTree[root].val = min(segTree[root*2+1].val, segTree[root*2+2].val);
}
}
线段树的查询
- 已经构建好了线段树,那么怎样在它上面超找某个区间的最小值呢?查询的思想是选出一些区间,使他们相连后恰好涵盖整个查询区间,因此线段树适合解决
相邻的区间的信息可以被合并成两个区间的并区间的信息
的问题。代码如下,具体见代码解
/*
功能:线段树的区间查询
root:当前线段树的根节点下标
[nstart, nend]: 当前节点所表示的区间
[qstart, qend]: 此次查询的区间
*/
int query(int root, int nstart, int nend, int qstart, int qend)
{
//查询区间和当前节点区间没有交集
if(qstart > nend || qend < nstart)
return INFINITE;
//当前节点区间包含在查询区间内
if(qstart <= nstart && qend >= nend)
return segTree[root].val;
//分别从左右子树查询,返回两者查询结果的较小值
int mid = (nstart + nend) / 2;
return min(query(root*2+1, nstart, mid, qstart, qend),
query(root*2+2, mid + 1, nend, qstart, qend));
}
单节点更新
- 单节点更新是指只更新线段树的某个叶子节点的值,但是更新叶子节点会对其父节点的值产生影响,因此更新子节点后,要回溯更新其父节点的值。
/*
功能:更新线段树中某个叶子节点的值
root:当前线段树的根节点下标
[nstart, nend]: 当前节点所表示的区间
index: 待更新节点在原始数组arr中的下标
addVal: 更新的值(原来的值加上addVal)
*/
void updateOne(int root, int nstart, int nend, int index, int addVal)
{
if(nstart == nend)
{
if(index == nstart)//找到了相应的节点,更新之
segTree[root].val += addVal;
return;
}
int mid = (nstart + nend) / 2;
if(index <= mid)//在左子树中更新
updateOne(root*2+1, nstart, mid, index, addVal);
else updateOne(root*2+2, mid+1, nend, index, addVal);//在右子树中更新
//根据左右子树的值回溯更新当前节点的值
segTree[root].val = min(segTree[root*2+1].val, segTree[root*2+2].val);
}
区间更新
- 区间更新是指更新某个区间内的叶子节点的值,因为涉及到的叶子节点不止一个,而叶子节点会影响其相应的非叶父节点,那么回溯需要更新的非叶子节点也会有很多,如果一次性更新完,操作的时间复杂度肯定不是O(lgn),例如当我们要更新区间[0,3]内的叶子节点时,需要更新出了叶子节点3,9外的所有其他节点。为此引入了线段树中的延迟标记概念,这也是线段树的精华所在。
const int INFINITE = INT_MAX;
const int MAXNUM = 1000;
struct SegTreeNode
{
int val;
int addMark;//延迟标记
}segTree[MAXNUM];//定义线段树
/*
功能:构建线段树
root:当前线段树的根节点下标
arr: 用来构造线段树的数组
istart:数组的起始位置
iend:数组的结束位置
*/
void build(int root, int arr[], int istart, int iend)
{
segTree[root].addMark = 0;//----设置标延迟记域
if(istart == iend)//叶子节点
segTree[root].val = arr[istart];
else
{
int mid = (istart + iend) / 2;
build(root*2+1, arr, istart, mid);//递归构造左子树
build(root*2+2, arr, mid+1, iend);//递归构造右子树
//根据左右子树根节点的值,更新当前根节点的值
segTree[root].val = min(segTree[root*2+1].val, segTree[root*2+2].val);
}
}
/*
功能:当前节点的标志域向孩子节点传递
root: 当前线段树的根节点下标
*/
void pushDown(int root)
{
if(segTree[root].addMark != 0)
{
//设置左右孩子节点的标志域,因为孩子节点可能被多次延迟标记又没有向下传递
//所以是 “+=”
segTree[root*2+1].addMark += segTree[root].addMark;
segTree[root*2+2].addMark += segTree[root].addMark;
//根据标志域设置孩子节点的值。因为我们是求区间最小值,因此当区间内每个元
//素加上一个值时,区间的最小值也加上这个值
segTree[root*2+1].val += segTree[root].addMark;
segTree[root*2+2].val += segTree[root].addMark;
//传递后,当前节点标记域清空
segTree[root].addMark = 0;
}
}
/*
功能:线段树的区间查询
root:当前线段树的根节点下标
[nstart, nend]: 当前节点所表示的区间
[qstart, qend]: 此次查询的区间
*/
int query(int root, int nstart, int nend, int qstart, int qend)
{
//查询区间和当前节点区间没有交集
if(qstart > nend || qend < nstart)
return INFINITE;
//当前节点区间包含在查询区间内
if(qstart <= nstart && qend >= nend)
return segTree[root].val;
//分别从左右子树查询,返回两者查询结果的较小值
pushDown(root); //----延迟标志域向下传递
int mid = (nstart + nend) / 2;
return min(query(root*2+1, nstart, mid, qstart, qend),
query(root*2+2, mid + 1, nend, qstart, qend));
}
/*
功能:更新线段树中某个区间内叶子节点的值
root:当前线段树的根节点下标
[nstart, nend]: 当前节点所表示的区间
[ustart, uend]: 待更新的区间
addVal: 更新的值(原来的值加上addVal)
*/
void update(int root, int nstart, int nend, int ustart, int uend, int addVal)
{
//更新区间和当前节点区间没有交集
if(ustart > nend || uend < nstart)
return ;
//当前节点区间包含在更新区间内
if(ustart <= nstart && uend >= nend)
{
segTree[root].addMark += addVal;
segTree[root].val += addVal;
return ;
}
pushDown(root); //延迟标记向下传递
//更新左右孩子节点
int mid = (nstart + nend) / 2;
update(root*2+1, nstart, mid, ustart, uend, addVal);
update(root*2+2, mid+1, nend, ustart, uend, addVal);
//根据左右子树的值回溯更新当前节点的值
segTree[root].val = min(segTree[root*2+1].val, segTree[root*2+2].val);
}
未完待续
by @Chicago_01