COMP9517 Week8
https://echo360.org.au/lesson/955bbf1e-48dc-4cda-968f-a9dff443e9d5/classroom#sortDirection=desc
1. ML VS DL :
1) 传统方法,我们需要针对图片设计 feature extractor去提取Low/Mid/High - level的features,需要大量的计算
2)DL中,自动学习features,do not design features anymore; Images as input, objective functions as Output;
2. NN VS CNN:
1)NN Weight parameters太多了,CNN是用filter
例如 Alex-net中 227*227*3 -> 55*55*96 ,共享了11*11*3 * 96 个weights
如果不共享,则55*55*96中的每一个output都要对应一组 11*11*3的weights ; 55*55*96*11*11*3 =?
2) CNN neurons are arranged in 3 dimensions: Width, Height and Depth.
2)Neurons in a layer are only connected to a small region of the layer before it (hence not fully connected)