COMP9517 Week8

https://echo360.org.au/lesson/955bbf1e-48dc-4cda-968f-a9dff443e9d5/classroom#sortDirection=desc

https://webcms3.cse.unsw.edu.au/static/uploads/course/COMP9517/20T2/e2306e906b088ac3972b31c8bf1a07e5e9cc48126ffeeaea921030e2cb0f09f5/COMP9517_20T2W8_Deep_Learning.pdf

 

 

1. ML VS DL :

  1) 传统方法,我们需要针对图片设计 feature extractor去提取Low/Mid/High - level的features,需要大量的计算

  2)DL中,自动学习features,do not design features anymore; Images as input, objective functions as Output;

 

 

 

 

2. NN VS CNN:

  1)NN Weight parameters太多了,CNN是用filter

    例如 Alex-net中 227*227*3 -> 55*55*96  ,共享了11*11*3 * 96 个weights

      如果不共享,则55*55*96中的每一个output都要对应一组 11*11*3的weights ; 55*55*96*11*11*3 =? 

    

 

 

  2) CNN neurons are arranged in 3 dimensions: Width, Height and Depth.

  2)Neurons in a layer are only connected to a small region of the layer before it (hence not fully connected)

 

posted @ 2020-07-23 13:44  ChevisZhang  阅读(184)  评论(0编辑  收藏  举报