COMP9517 Week7 Tracking

https://echo360.org.au/lesson/9750cbfe-6500-42f7-b024-45c5cf2a69b0/classroom#sortDirection=desc

https://webcms3.cse.unsw.edu.au/static/uploads/course/COMP9517/20T2/bca52a9037053fc7f77869b5c36edef5830da7920d455dce479c282c9ba12431/COMP9517_20T2W7_Part_1-1_Motion.pdf

 

Tracking :

 

1. Bayesian inference Using probabilistic models to perform tracking

  1). • A moving object has a state which evolves over time; Random variable Xi can contain any quantities of interest (position, velocity, acceleration, shape, intensity, colour, …)

  2)   The state is measured at each time point ; Random variable Yi  measurements are typical features computed from the images

  3)  贝叶斯预测三步

    

    (1)Prediction 基于前i-1步的measurements预测第i步的state 

      

 

 

    (2)Assiciation:如果有不同的objects 则需要选择不同的 object-related measurements (这里预测单个object 没有这一步)

      (3)   Correction: 用正确的Yi更新之前的预测

        

 

 

 

 

 

   4) Current state only depends on the immediate past; Measurements depend only on the current state

    隐马尔可夫模型

    

 

 

 

 

 

2.• Kalman filtering Using linear model assumptions for tracking

    假设object线性运用,noise成高斯分布

   

 

   

 

 

    

 

 

 

 

3.• Particle filtering Using nonlinear models for tracking

 

 

  

 

posted @ 2020-07-19 20:13  ChevisZhang  阅读(149)  评论(0编辑  收藏  举报