COMP9517 lab3 image segementation

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

from scipy import ndimage as ndi
from skimage.morphology import watershed
from skimage.feature import peak_local_max
from sklearn.cluster import MeanShift

from PIL import Image

size = 100, 100

img_names = ["shapes.png", "strawberry.png"]
ext_names = ["coins.png", "kiwi.png"]

images = [r'C:\Users\harri\Desktop\2020T2\9517\lab3\COMP9517_20T2_Lab3_Images\\'+i for i in img_names]
ext_images = [r'C:\Users\harri\Desktop\2020T2\9517\lab3\COMP9517_20T2_Lab3_Images\\'+i for i in ext_names]


def plot_three_images(figure_title, image1, label1,
image2, label2, image3, label3):
fig = plt.figure()
fig.suptitle(figure_title)

# Display the first image
fig.add_subplot(1, 3, 1)
plt.imshow(image1)
plt.axis('off')
plt.title(label1)

# Display the second image
fig.add_subplot(1, 3, 2)
plt.imshow(image2)
plt.axis('off')
plt.title(label2)

# Display the third image
fig.add_subplot(1, 3, 3)
plt.imshow(image3)
plt.axis('off')
plt.title(label3)

plt.show()


for img_path in ext_images:
img = Image.open(img_path)
img.thumbnail(size)


# TODO: perform meanshift on image
meanShift_img = np.array(img)[:,:,:3]
R = meanShift_img[:,:,0:1].flatten()[:,np.newaxis]
G = meanShift_img[:,:,1:2].flatten()[:,np.newaxis]
B = meanShift_img[:,:,2:3].flatten()[:,np.newaxis]
colour_samples = np.concatenate((R,G,B),axis=1)
MS = MeanShift(bin_seeding=True)
ms_labels = MS.fit_predict(colour_samples) # CHANGE THIS
ms_labels = ms_labels.reshape(meanShift_img.shape[0],meanShift_img.shape[1])
# TODO: perform an optimisation and then watershed on image

ws_img = img.convert('L')
gray_ws_image = np.array(ws_img)
distance = ndi.distance_transform_edt(gray_ws_image)
local_max = peak_local_max(distance, indices=False, footprint=np.ones((3, 3)),
labels=gray_ws_image)
markers = ndi.label(local_max)[0]

ws_labels = watershed(-distance,markers,mask = gray_ws_image) # CHANGE THIS


# Display the results
plot_three_images(img_path, img, "Original Image", ms_labels, "MeanShift Labels",
ws_labels, "Watershed Labels")
posted @ 2020-07-01 21:32  ChevisZhang  阅读(276)  评论(0编辑  收藏  举报