COMP9517 week4a Image Segmentation

https://webcms3.cse.unsw.edu.au/static/uploads/course/COMP9517/20T2/b6a689dc94d52782367ec4a81b345f7a3a11a03c871a8731570f5af2ab992704/COMP9517_20T2W4_Image_Segmentation_Part_1.pdf

https://echo360.org.au/lesson/1dff8680-04a8-4cd7-ac45-0822b6f936e9/classroom#sortDirection=desc

 

总结:

  1.Basic Segmentation methods

    1) Thresholding

      (1) 低于Threshold为background 高于为Foreground  ;   binary-segmentation

      (2) regions有重叠的灰度大小,就难以分割了,要么background变得noisy,要么foreground不整齐

    2)K-means clustering

      (1)• Could work if the number of clusters is known a priori

      (2)有时候regions多,threshold就不好用了,可以用 k-means (例1中用了3-means)

        (3)   对于另一些图 k 不好确定,k-means就不太能用          

    3)Feature extraction and classification

      (1)将Image分成patches,然后sliding window提取features 做classification

  2.More sophisticated segmentation methods

    1) Region splitting and merging**

       (1) 计算 Connected Components : 4-connected , 8-connected两种方法计算出的数量是不一样的

       (2)Connected Components Algorithm:

          1. 从上到下,从左到右,两层遍历所有pixel

          2. 如果pixel是object_pixel,检查其Neighbor,neighbour种有label就标上最小的那个label,没有就标上新的

          3. 对于相连而不同labels的pixels,记录等价的labels:  Equivalence sets {1,2,6} {3,4,5}

          4. 再遍历一遍,对于pixel赋值 Equivalence sets中最小的值,背景赋值为0

      (3)Region splitting 

          1. 在直方图中找到最好的分割开peaks的threshold——t (峰谷),重复直到regions are either fairly uniform or below a certain size

          

 

 

           2. 递归版本的分割,从左下的图开始,原始图片入栈,分割图片成几个clusters,几个子图入栈,然后pop出来继续。

 

          

      (4)Reigion Merging

        1.Heuristics-based region merging

        2. Graph-based region merging

        3.Merging by region growing

 

 

    2) – Superpixel segmentation

    3) – Watershed segmentation

      (1) 选几个markers开始,一般是自动选取Local minimum

      (2)intensity从下到上,intensity越小,priority越大,入栈

      (3)pop出priority最大的pixel,如果它的neighbour全是同一个label,则assign它同样的label,如果neighbour不是全一样,则ignore it 

      (4)注意:

        1.有时候会oversegment,一个object分成好多个,这个时候要么prepossesing要么postprocessing

        2.object是白色时,需要intensity inversion 来找local minimum

      

 

        

 

 

 

 

    4)– Conditional random field

    5)– Maximally stable extremal regions

    6)– Active contour segmentation

    7)– Mean-shifting algorithm

      1.在特征空间中,随机选择pixel作为start point,计算中心点(带权重的),并把start point迁移到中心点;不断迭代直到收敛

      2. 用高斯公式计算权重,离中心点越近的权重越大

      3. 优点:

        (1)不需要获知 k , 可以自己找到 number of clusters

        (2)只有一个变量

      4.缺点:

        (1)计算量大,因为要计算所有的k

        (2)变量window size很难解释

        (3)高维空间难以解释

      

 

 

      

 

 

 

    8)– Level-set segmentation

  3.How to evaluate segmentation methods

    1)    Quantitative evaluation metrics

    2)– Receiver operating characteristic

posted @ 2020-06-27 23:37  ChevisZhang  阅读(223)  评论(0编辑  收藏  举报