6-Pandas时序数据处理之重采样与频率转换(升降采样、resample()、OHLC、groupby()重采样)

重采样(resampling)指的是将时间序列从一个频率转换到另一个频率的过程,其中:

  • 高频转为低频成为降采样(下采样)
  • 低频转为高频成为升采样(上采样)

 1、使用resample()方法进行重采样

 :现有一个以年月日为索引的时间序列ts,将其重采样为年月的频率,并计算均值

>>> ts = pd.Series(np.random.randint(0,10,5))
>>> ts.index = pd.date_range('2020-7-30',periods=5)
>>> ts
2020-07-30    4
2020-07-31    4
2020-08-01    8
2020-08-02    6
2020-08-03    7
Freq: D, dtype: int32

>>> ts.resample('M')
DatetimeIndexResampler [freq=<MonthEnd>, axis=0, closed=right, label=right, convention=start, base=0]
>>> ts.resample('M').mean()
2020-07-31    4
2020-08-31    7
Freq: M, dtype: int32

2、降采样

使用resample()对数据进行降采样时,需要考虑两个问题:

  1. 各区间那边是闭合的(close参数的值--right即又边界闭合,left即左边界闭合
  2. 如何标记各个聚合面元,用区间的开头还是末尾

 例:通过求和的方式将上述数据聚合到2分钟的集合里,传入close='right'会让右边界闭合,传入close='left'会让左边界闭合

>>> ts.resample('2min',closed='right').sum()
2020-07-31 23:58:00    0
2020-08-01 00:00:00    3
2020-08-01 00:02:00    7
Freq: 2T, dtype: int32

>>> ts.resample('2min',closed='left').sum()
2020-08-01 00:00:00    1
2020-08-01 00:02:00    5
2020-08-01 00:04:00    4
Freq: 2T, dtype: int32

  可以使用loffset设置索引位移传入参数loffset一个字符串或者偏移量,即可实现对结果索引的一些位移

>>> ts.resample('T',loffset='-1s').sum()
2020-07-31 23:59:59    0
2020-08-01 00:00:59    1
2020-08-01 00:01:59    2
2020-08-01 00:02:59    3
2020-08-01 00:03:59    4
Freq: T, dtype: int32

>>> ts.resample('2T',loffset='-1s').sum()
2020-07-31 23:59:59    1
2020-08-01 00:01:59    5
2020-08-01 00:03:59    4

3、OHLC重采样

金融领域中有一种时间序列聚合方式(OHLC),计算各面元的四个值:

  • O:open,开盘
  • H:high,最大值
  • L:low,最小值
  • C:close,收盘

其后也不单单用于金融领域,O可以用于表达初始值,H表示最大值,L表示最小值,C表示末尾值。

 传入how = ‘ohlc’可得到一个含有这四种聚合值的DateFrame,但是格式已经改变,如下:

>>> ts.resample('2T',closed = 'right',how = 'ohlc')
__main__:1: FutureWarning: how in .resample() is deprecated
the new syntax is .resample(...).ohlc()
                     open  high  low  close
2020-07-31 23:58:00     0     0    0      0
2020-08-01 00:00:00     1     2    1      2
2020-08-01 00:02:00     3     4    3      4

>>> ts.resample('2T',closed = 'right').ohlc()
                     open  high  low  close
2020-07-31 23:58:00     0     0    0      0
2020-08-01 00:00:00     1     2    1      2
2020-08-01 00:02:00     3     4    3      4

3、groupby重采样

同另一篇博文【Pandas时序数据处理(日期范围pd.date_range()、频率(基础频率表)及移动(shift()、rollforward()、rollback()))的第四部分的例子】

例:若有一时间序列数据,如何在每月月末显示该月数据的均值

 无需用到 rollback 滚动,只需传入一个能够访问 ts 索引上的月份字段的函数即可

>>> rng = pd.date_range('2020-1-14',periods=100,freq='D')
>>> ts = pd.Series(np.random.randint(0,10,100),index=rng)
>>> ts.groupby(lambda x:x.month).mean()
1    3.722222
2    5.068966
3    4.290323
4    4.863636
dtype: float64

 根据星期几对上述时间序列进行分组并求出分组后的均值,只需传一个能够访问ts索引上的星期字段函数即可

>>> ts.groupby(lambda x:x.weekday).mean()
0    4.714286
1    5.333333
2    4.800000
3    3.214286
4    4.142857
5    4.785714
6    4.714286
dtype: float64

4、升采样  

 将数据从低频转换到高频时,不需要聚合

>>> data = pd.DataFrame(np.random.randint(0,10,size=(2,4)))
>>> data.index = pd.date_range('2020-1-14',periods = 2,freq='W-WED')
>>> data.columns = ['one','two','three','four']
>>> data
            one  two  three  four
2020-01-15    6    9      8     6
2020-01-22    5    6      7     6

 将data重采样到日频率,默认会引入缺失值

>>> data.resample('D').mean()
            one  two  three  four
2020-01-15  6.0  9.0    8.0   6.0
2020-01-16  NaN  NaN    NaN   NaN
2020-01-17  NaN  NaN    NaN   NaN
2020-01-18  NaN  NaN    NaN   NaN
2020-01-19  NaN  NaN    NaN   NaN
2020-01-20  NaN  NaN    NaN   NaN
2020-01-21  NaN  NaN    NaN   NaN
2020-01-22  5.0  6.0    7.0   6.0

  假设用前面的值填充缺失值,使用ffill()实现,具体填充方式可以参考另一篇博文【Pandas数据初探索之缺失值处理与丢弃数据(填充fillna()、删除drop()、drop_duplicates()、dropna())的第二部分】

>>> data.resample('D').ffill()
            one  two  three  four
2020-01-15    6    9      8     6
2020-01-16    6    9      8     6
2020-01-17    6    9      8     6
2020-01-18    6    9      8     6
2020-01-19    6    9      8     6
2020-01-20    6    9      8     6
2020-01-21    6    9      8     6
2020-01-22    5    6      7     6

>>> data.resample('D').bfill()
            one  two  three  four
2020-01-15    6    9      8     6
2020-01-16    5    6      7     6
2020-01-17    5    6      7     6
2020-01-18    5    6      7     6
2020-01-19    5    6      7     6
2020-01-20    5    6      7     6
2020-01-21    5    6      7     6
2020-01-22    5    6      7     6

 也可以仅填充指定的时期数(目的是限制前面观测值的持续使用距离,limit = 2表示前面的观测值只能填充往后的两行数据) 

>>> data.resample('D').pad(limit=2)
            one  two  three  four
2020-01-15  6.0  9.0    8.0   6.0
2020-01-16  6.0  9.0    8.0   6.0
2020-01-17  6.0  9.0    8.0   6.0
2020-01-18  NaN  NaN    NaN   NaN
2020-01-19  NaN  NaN    NaN   NaN
2020-01-20  NaN  NaN    NaN   NaN
2020-01-21  NaN  NaN    NaN   NaN
2020-01-22  5.0  6.0    7.0   6.0

5、通过日期进行重采样 

 对于使用时期索引的数据进行重采样较为简单,先创建一个对象:

>>> df = pd.DataFrame(np.random.randn(24,4))
>>> df.index = pd.period_range('2020-1',periods=24,freq='M')
>>> df.columns = ['one','two','three','four']
>>> df
              one       two     three      four
2020-01 -0.773347  0.121962  0.688172 -0.128935
2020-02  1.260893  0.949058  0.617078 -1.444115
2020-03  0.470896  2.678574 -0.789855 -0.788634
2020-04 -1.011997 -0.743128  1.118954 -0.643499
2020-05  0.139304  0.119937  0.386177 -0.395788
2020-06 -1.264226 -0.647303  0.484827  0.986434
2020-07  0.430877 -0.007752  0.484699 -0.494257
2020-08  2.734575  0.850000  1.020758  0.078646
2020-09 -0.038556  0.168716 -1.301591  0.874963
2020-10 -1.061978  0.329240  0.372740 -0.474351
2020-11 -1.744309  0.050698 -1.261978  1.312718
2020-12  0.518119 -0.062940  0.765845  1.788449
2021-01 -0.876448  0.449906  0.927772 -0.044937
2021-02 -0.515143  1.594102  0.470797  0.377561
2021-03  0.857145  0.488788  0.346126  0.588185
2021-04 -0.467256  0.338766  0.307865 -0.713797
2021-05  1.674114 -0.730812  0.486691  0.059144
2021-06  0.746407 -0.542054  0.047589 -0.616221
2021-07  0.205364 -0.865091 -0.450592  0.736776
2021-08  1.123738  0.091906  1.039720  0.776065
2021-09  1.869627  1.688411 -2.790112 -0.116390
2021-10 -1.315471 -0.085058  0.729701  0.848654
2021-11  2.065949  0.297769 -0.398484 -1.197251
2021-12 -0.466184 -0.084250  0.700341 -1.764270

 传入'A-DEC'进行降采样(使用年度财政的方式)

>>> df.resample('A-DEC').mean()
           one       two     three      four
2020 -0.028312  0.317255  0.215486  0.055969
2021  0.408487  0.220199  0.118118 -0.088873

 传入'A-JUN'进行降采样(使用6月作为财政年度的分割单位)

>>> df.resample('A-JUN').mean()
           one       two     three      four
2020 -0.196413  0.413183  0.417559 -0.402423
2021  0.188129  0.243888  0.222276  0.228009
2022  0.580504  0.173948 -0.194904 -0.119403

6、通过日期进行升采样 

 需决定在新频率中,各区间的哪端用于放置原来的值,convention参数默认为start,可设置为end

>>> annu_df = df.resample('A-DEC').mean()
>>> annu_df
           one       two     three      four
2020 -0.028312  0.317255  0.215486  0.055969
2021  0.408487  0.220199  0.118118 -0.088873

>>> annu_df.resample('Q-DEC').ffill()
             one       two     three      four
2020Q1 -0.028312  0.317255  0.215486  0.055969
2020Q2 -0.028312  0.317255  0.215486  0.055969
2020Q3 -0.028312  0.317255  0.215486  0.055969
2020Q4 -0.028312  0.317255  0.215486  0.055969
2021Q1  0.408487  0.220199  0.118118 -0.088873
2021Q2  0.408487  0.220199  0.118118 -0.088873
2021Q3  0.408487  0.220199  0.118118 -0.088873
2021Q4  0.408487  0.220199  0.118118 -0.088873
>>> annu_df.resample('Q-DEC',convention = 'end').ffill()
             one       two     three      four
2020Q4 -0.028312  0.317255  0.215486  0.055969
2021Q1 -0.028312  0.317255  0.215486  0.055969
2021Q2 -0.028312  0.317255  0.215486  0.055969
2021Q3 -0.028312  0.317255  0.215486  0.055969
2021Q4  0.408487  0.220199  0.118118 -0.088873

  

 

posted @ 2020-08-15 11:54  大脸猫12581  阅读(3441)  评论(0编辑  收藏  举报