分治算法

Wiki的解释

计算机科学中,分治法是建基于多项分支递归的一种很重要的算法范式。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

这个技巧是很多高效算法的基础,如排序算法归并排序快速排序)、傅立叶变换快速傅立叶变换)。

另一方面,理解及设计分治法算法的能力需要一定时间去掌握。正如以归纳法去证明一个理论,为了使递归能够推行,很多时候需要用一个较为概括或复杂的问题去取代原有问题。而且并没有一个系统性的方法去适当地概括问题。

分治法这个名称有时亦会用于将问题简化为只有一个细问题的算法,例如用于在已排序的列中查找其中一项的折半搜索算法(或是在数值分析中类似的勘根算法)。这些算法比一般的分治算法更能有效地运行。其中,假如算法使用尾部递归的话,便能转换成简单的循环。但在这广义之下,所有使用递归或循环的算法均被视作“分治算法”。因此,有些作者考虑“分治法”这个名称应只用于每个有最少两个子问题的算法。而只有一个子问题的曾被建议使用减治法这个名称。

分治算法通常以数学归纳法来验证。而它的计算成本则多数以解递归关系式来判定。

 

分治算法(divide and conquer)的核心思想其实就是四个字,分而治之 ,也就是将原问题划分成 n 个规模较小,并且结构与原问题相似的子问题,递归地解决这些子问题,然后再合并其结果,就得到原问题的解。

 

这个定义看起来有点类似递归的定义。关于分治和递归的区别,我们在排序(下)的时候讲过,分治算法是一种处理问题的思想,递归是一种编程技巧。

实际上,分治算法一般都比较适合用递归来实现。分治算法的递归实现中,每一层递归都会涉及这样三个操作:

  分解:将原问题分解成一系列子问题;

  解决:递归地求解各个子问题,若子问题足够小,则直接求解;

  合并:将子问题的结果合并成原问题。

 

分治算法能解决的问题,一般需要满足下面这几个条件:(至少有两个子问题)

  原问题与分解成的小问题具有相同的模式;

  原问题分解成的子问题可以独立求解,子问题之间没有相关性,这一点是分治算法跟动态规划的明显区别,等我们讲到动态规划的时候,会详细对比这两种算法;

  具有分解终止条件,也就是说,当问题足够小时,可以直接求解;

  可以将子问题合并成原问题,而这个合并操作的复杂度不能太高,否则就起不到减小算法总体复杂度的效果了。

 

例子

假设我们有 n 个数据,我们期望数据从小到大排列,那完全有序的数据的有序度就是 n(n-1)/2,逆序度等于 0;相反,倒序排列的数据的有序度就是 0,逆序度是 n(n-1)/2。除了这两种极端情况外,我们通过计算有序对或者逆序对的个数,来表示数据的有序度或逆序度。

 

 

 套用分治的思想来求数组 A 的逆序对个数。我们可以将数组分成前后两半 A1 和 A2,分别计算 A1 和 A2 的逆序对个数 K1 和 K2,然后再计算 A1 与 A2 之间的逆序对个数 K3。那数组 A 的逆序对个数就等于 K1+K2+K3。

 

 

 看完结果这不就是个归并排序。

private int num = 0; // 全局变量或者成员变量

public int count(int[] a, int n) {
  num = 0;
  mergeSortCounting(a, 0, n-1);
  return num;
}

private void mergeSortCounting(int[] a, int p, int r) {
  if (p >= r) return;
  int q = (p+r)/2;
  mergeSortCounting(a, p, q);
  mergeSortCounting(a, q+1, r);
  merge(a, p, q, r);
}

private void merge(int[] a, int p, int q, int r) {
  int i = p, j = q+1, k = 0;
  int[] tmp = new int[r-p+1];
  while (i<=q && j<=r) {
    if (a[i] <= a[j]) {
      tmp[k++] = a[i++];
    } else {
      num += (q-i+1); // 统计p-q之间,比a[j]大的元素个数
      tmp[k++] = a[j++];
    }
  }
  while (i <= q) { // 处理剩下的
    tmp[k++] = a[i++];
  }
  while (j <= r) { // 处理剩下的
    tmp[k++] = a[j++];
  }
  for (i = 0; i <= r-p; ++i) { // 从tmp拷贝回a
    a[p+i] = tmp[i];
  }
}

 

分治思想在海量数据处理中的应用

数据结构和算法,大部分都是基于内存存储和单机处理。但是,如果要处理的数据量非常大,没法一次性放到内存中,这个时候,这些数据结构和算法就无法工作了。

 

比如,给 10GB 的订单文件按照金额排序这样一个需求,看似是一个简单的排序问题,但是因为数据量大,有 10GB,而我们的机器的内存可能只有 2、3GB 这样子,无法一次性加载到内存,也就无法通过单纯地使用快排、归并等基础算法来解决了。

 

比如刚刚举的那个例子,给 10GB 的订单排序,我们就可以先扫描一遍订单,根据订单的金额,将 10GB 的文件划分为几个金额区间。比如订单金额为 1 到 100 元的放到一个小文件,101 到 200 之间的放到另一个文件,以此类推。这样每个小文件都可以单独加载到内存排序,最后将这些有序的小文件合并,就是最终有序的 10GB 订单数据了。不过,这里有一个点要注意,就是数据的存储与计算所在的机器是同一个或者在网络中靠的很近(比如一个局域网内,数据存取速度很快),否则就会因为数据访问的速度,导致整个处理过程不但不会变快,反而有可能变慢。

 

MapReduce

MapReduceGoogle提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(归纳)”,及他们的主要思想,都是从函数式编程语言借来的,还有从矢量编程语言借来的特性。[1]

当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归纳)函数,用来保证所有映射的键值对中的每一个共享相同的键组。

 

MapReduce通过把对数据集的大规模操作分发给网络上的每个节点实现可靠性;每个节点会周期性的把完成的工作和状态的更新报告回来。如果一个节点保持沉默超过一个预设的时间间隔,主节点(类同Google文件系统中的主服务器)记录下这个节点状态为死亡,并把分配给这个节点的数据发到别的节点。每个操作使用命名文件的不可分割操作以确保不会发生并行线程间的冲突;当文件被改名的时候,系统可能会把他们复制到任务名以外的另一个名字上去。(避免副作用)。

归纳操作工作方式很类似,但是由于归纳操作在并行能力较差,主节点会尽量把归纳操作调度在一个节点上,或者离需要操作的数据尽可能近的节点上了;这个特性可以满足Google的需求,因为他们有足够的带宽,他们的内部网络没有那么多的机器。(Wiki)

 

尽管 MapReduce 的模型非常简单,但是在 Google 内部应用非常广泛。它除了可以用来处理这种数据与数据之间存在关系的任务,比如 MapReduce 的经典例子,统计文件中单词出现的频率。除此之外,它还可以用来处理数据与数据之间没有关系的任务,比如对网页分析、分词等,每个网页可以独立的分析、分词,而这两个网页之间并没有关系。网页几十亿、上百亿,如果单机处理,效率低下,我们就可以利用 MapReduce 提供的高可靠、高性能、高容错的并行计算框架,并行地处理这几十亿、上百亿的网页。

 

创新的基本条件是对基础知识的极度掌控,MapReduce 就是一个例子。

 

参考王争老师《数据结构与算法》

posted @ 2019-12-23 19:46  zhangyu63  阅读(442)  评论(0编辑  收藏  举报