tensorflow--variable_scope
1.with tf.variable_scope(name , reuse = reuse)
(1)创建variable scope
with tf.variable_scope("foo"): with tf.variable_scope("bar"): v = tf.get_variable("v", [1]) assert v.name == "foo/bar/v:0"
(2)共享变量
with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) with tf.variable_scope("foo", reuse=True): v1 = tf.get_variable("v", [1]) assert v1 == v
(3)在一个变量域中,不允许重用变量
with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) v1 = tf.get_variable("v", [1]) # Raises ValueError("... v already exists ...").
(4)当试图获取在重用模式中不存在的变量时,我们会引发异常
with tf.variable_scope("foo", reuse=True): v = tf.get_variable("v", [1]) # Raises ValueError("... v does not exists ...").