CheeseZH: Stanford University: Machine Learning Ex4:Training Neural Network(Backpropagation Algorithm)

1. Feedforward and cost function;

2.Regularized cost function:

3.Sigmoid gradient

The gradient for the sigmoid function can be computed as:

where:

4.Random initialization

randInitializeWeights.m

 1 function W = randInitializeWeights(L_in, L_out)
 2 %RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
 3 %incoming connections and L_out outgoing connections
 4 %   W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights 
 5 %   of a layer with L_in incoming connections and L_out outgoing 
 6 %   connections. 
 7 %
 8 %   Note that W should be set to a matrix of size(L_out, 1 + L_in) as
 9 %   the column row of W handles the "bias" terms
10 %
11 
12 % You need to return the following variables correctly 
13 W = zeros(L_out, 1 + L_in);
14 
15 % ====================== YOUR CODE HERE ======================
16 % Instructions: Initialize W randomly so that we break the symmetry while
17 %               training the neural network.
18 %
19 % Note: The first row of W corresponds to the parameters for the bias units
20 %
21 epsilon_init = 0.12;
22 W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;
23 
24 % =========================================================================
25 
26 end
View Code

 

5.Backpropagation(using a for-loop for t=1:m and place steps 1-4 below inside the for-loop), with the tth iteration perfoming the calculation on the tth training example(x(t),y(t)).Step 5 will divide the accumulated gradients by m to obtain the gradients for the neural network cost function.

(1) Set the input layer's values(a(1)) to the t-th training example x(t). Perform a feedforward pass, computing the activations(z(2),a(2),z(3),a(3)) for layers 2 and 3.

(2) For each output unit k in layer 3(the output layer), set :

where yk = 1 or 0.

(3)For the hidden layer l=2, set:

(4) Accumulate the gradient from this example using the following formula. Note that you should skip or remove δ0(2).

(5) Obtain the(unregularized) gradient for the neural network cost function by dividing the accumulated gradients by 1/m:

nnCostFunction.m

  1 function [J grad] = nnCostFunction(nn_params, ...
  2                                    input_layer_size, ...
  3                                    hidden_layer_size, ...
  4                                    num_labels, ...
  5                                    X, y, lambda)
  6 %NNCOSTFUNCTION Implements the neural network cost function for a two layer
  7 %neural network which performs classification
  8 %   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
  9 %   X, y, lambda) computes the cost and gradient of the neural network. The
 10 %   parameters for the neural network are "unrolled" into the vector
 11 %   nn_params and need to be converted back into the weight matrices. 
 12 % 
 13 %   The returned parameter grad should be a "unrolled" vector of the
 14 %   partial derivatives of the neural network.
 15 %
 16 
 17 % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
 18 % for our 2 layer neural network
 19 Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
 20                  hidden_layer_size, (input_layer_size + 1));
 21 
 22 Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
 23                  num_labels, (hidden_layer_size + 1));
 24 
 25 % Setup some useful variables
 26 m = size(X, 1);
 27          
 28 % You need to return the following variables correctly 
 29 J = 0;
 30 Theta1_grad = zeros(size(Theta1));
 31 Theta2_grad = zeros(size(Theta2));
 32 
 33 % ====================== YOUR CODE HERE ======================
 34 % Instructions: You should complete the code by working through the
 35 %               following parts.
 36 %
 37 % Part 1: Feedforward the neural network and return the cost in the
 38 %         variable J. After implementing Part 1, you can verify that your
 39 %         cost function computation is correct by verifying the cost
 40 %         computed in ex4.m
 41 %
 42 % Part 2: Implement the backpropagation algorithm to compute the gradients
 43 %         Theta1_grad and Theta2_grad. You should return the partial derivatives of
 44 %         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
 45 %         Theta2_grad, respectively. After implementing Part 2, you can check
 46 %         that your implementation is correct by running checkNNGradients
 47 %
 48 %         Note: The vector y passed into the function is a vector of labels
 49 %               containing values from 1..K. You need to map this vector into a 
 50 %               binary vector of 1's and 0's to be used with the neural network
 51 %               cost function.
 52 %
 53 %         Hint: We recommend implementing backpropagation using a for-loop
 54 %               over the training examples if you are implementing it for the 
 55 %               first time.
 56 %
 57 % Part 3: Implement regularization with the cost function and gradients.
 58 %
 59 %         Hint: You can implement this around the code for
 60 %               backpropagation. That is, you can compute the gradients for
 61 %               the regularization separately and then add them to Theta1_grad
 62 %               and Theta2_grad from Part 2.
 63 %
 64 
 65 %Part 1
 66 %Theta1 has size 25*401
 67 %Theta2 has size 10*26
 68 %y hase size 5000*1
 69 K = num_labels;
 70 Y = eye(K)(y,:); %[5000 10]
 71 a1 = [ones(m,1),X];%[5000 401]
 72 a2 = sigmoid(a1*Theta1'); %[5000 25]
 73 a2 = [ones(m,1),a2];%[5000 26]
 74 h = sigmoid(a2*Theta2');%[5000 10]
 75 
 76 costPositive = -Y.*log(h);
 77 costNegtive = (1-Y).*log(1-h); 
 78 cost = costPositive - costNegtive;
 79 J = (1/m)*sum(cost(:));
 80 %Regularized
 81 Theta1Filtered = Theta1(:,2:end); %[25 400]
 82 Theta2Filtered = Theta2(:,2:end); %[10 25]
 83 reg = (lambda/(2*m))*(sumsq(Theta1Filtered(:))+sumsq(Theta2Filtered(:)));
 84 J = J + reg;
 85 
 86 
 87 %Part 2
 88 Delta1 = 0;
 89 Delta2 = 0;
 90 for t=1:m,
 91   %step 1
 92   a1 = [1 X(t,:)]; %[1 401]
 93   z2 = a1*Theta1'; %[1 25]
 94   a2 = [1 sigmoid(z2)];%[1 26]
 95   z3 = a2*Theta2'; %[1 10]
 96   a3 = sigmoid(z3); %[1 10]
 97   %step 2
 98   yt = Y(t,:);%[1 10]
 99   d3 = a3-yt; %[1 10]
100   %step 3
101   %   [1 10]  [10 25]           [1 25]
102   d2 = (d3*Theta2Filtered).*sigmoidGradient(z2); %[1 25]
103   %step 4
104   Delta1 = Delta1 + (d2'*a1);%[25 401]
105   Delta2 = Delta2 + (d3'*a2);%[10 26]  
106 end;
107 
108 %step 5
109 Theta1_grad = (1/m)*Delta1;
110 Theta2_grad = (1/m)*Delta2;
111 
112 %Part 3
113 Theta1_grad(:,2:end) = Theta1_grad(:,2:end) + ((lambda/m)*Theta1Filtered);
114 Theta2_grad(:,2:end) = Theta2_grad(:,2:end) + ((lambda/m)*Theta2Filtered);
115 
116 % -------------------------------------------------------------
117 
118 % =========================================================================
119 
120 % Unroll gradients
121 grad = [Theta1_grad(:) ; Theta2_grad(:)];
122 
123 
124 end
View Code

 

6.Gradient checking

Let

and

for each i, that:

computeNumericalGradient.m

 1 function numgrad = computeNumericalGradient(J, theta)
 2 %COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
 3 %and gives us a numerical estimate of the gradient.
 4 %   numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
 5 %   gradient of the function J around theta. Calling y = J(theta) should
 6 %   return the function value at theta.
 7 
 8 % Notes: The following code implements numerical gradient checking, and 
 9 %        returns the numerical gradient.It sets numgrad(i) to (a numerical 
10 %        approximation of) the partial derivative of J with respect to the 
11 %        i-th input argument, evaluated at theta. (i.e., numgrad(i) should 
12 %        be the (approximately) the partial derivative of J with respect 
13 %        to theta(i).)
14 %                
15 
16 numgrad = zeros(size(theta));
17 perturb = zeros(size(theta));
18 e = 1e-4;
19 for p = 1:numel(theta)
20     % Set perturbation vector
21     perturb(p) = e;
22     loss1 = J(theta - perturb);
23     loss2 = J(theta + perturb);
24     % Compute Numerical Gradient
25     numgrad(p) = (loss2 - loss1) / (2*e);
26     perturb(p) = 0;
27 end
28 
29 end
View Code

 


7.Regularized Neural Networks

for j=0:

for j>=1:


 

别人的代码:

https://github.com/jcgillespie/Coursera-Machine-Learning/tree/master/ex4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

posted @ 2015-06-29 17:44  ZH奶酪  阅读(3079)  评论(0编辑  收藏  举报