Docker 核心技术与实现原理

提到虚拟化技术,我们首先想到的一定是 Docker,经过四年的快速发展 Docker 已经成为了很多公司的生产环境中大规模使用,也不再是一个只能在开发阶段使用的玩具了。作为在生产环境中广泛应用的产品,Docker 有着非常成熟的社区以及大量的使用者,代码库中的内容也变得非常庞大。

图片

同样,由于项目的发展、功能的拆分以及各种奇怪的改名 PR,让我们再次理解 Docker 的的整体架构变得更加困难。

虽然 Docker 目前的组件较多,并且实现也非常复杂,但是本文不想过多的介绍 Docker 具体的实现细节,我们更想谈一谈 Docker 这种虚拟化技术的出现有哪些核心技术的支撑。

图片

首先,Docker 的出现一定是因为目前的后端在开发和运维阶段确实需要一种虚拟化技术解决开发环境和生产环境环境一致的问题,通过 Docker 我们可以将程序运行的环境也纳入到版本控制中,排除因为环境造成不同运行结果的可能。但是上述需求虽然推动了虚拟化技术的产生,但是如果没有合适的底层技术支撑,那么我们仍然得不到一个完美的产品。本文剩下的内容会介绍几种 Docker 使用的核心技术,如果我们了解它们的使用方法和原理,就能清楚 Docker 的实现原理。

Namespaces

命名空间 (namespaces) 是 Linux 为我们提供的用于分离进程树、网络接口、挂载点以及进程间通信等资源的方法。在日常使用 Linux 或者 macOS 时,我们并没有运行多个完全分离的服务器的需要,但是如果我们在服务器上启动了多个服务,这些服务其实会相互影响的,每一个服务都能看到其他服务的进程,也可以访问宿主机器上的任意文件,这是很多时候我们都不愿意看到的,我们更希望运行在同一台机器上的不同服务能做到完全隔离,就像运行在多台不同的机器上一样。

图片

在这种情况下,一旦服务器上的某一个服务被入侵,那么入侵者就能够访问当前机器上的所有服务和文件,这也是我们不想看到的,而 Docker 其实就通过 Linux 的 Namespaces 对不同的容器实现了隔离。

Linux 的命名空间机制提供了以下七种不同的命名空间,包括 CLONE_NEWCGROUPCLONE_NEWIPCCLONE_NEWNETCLONE_NEWNSCLONE_NEWPIDCLONE_NEWUSER 和 CLONE_NEWUTS,通过这七个选项我们能在创建新的进程时设置新进程应该在哪些资源上与宿主机器进行隔离。

进程

进程是 Linux 以及现在操作系统中非常重要的概念,它表示一个正在执行的程序,也是在现代分时系统中的一个任务单元。在每一个 *nix 的操作系统上,我们都能够通过 ps 命令打印出当前操作系统中正在执行的进程,比如在 Ubuntu 上,使用该命令就能得到以下的结果:

$ ps -ef
UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0 Apr08 ?        00:00:09 /sbin/init
root         2     0  0 Apr08 ?        00:00:00 [kthreadd]
root         3     2  0 Apr08 ?        00:00:05 [ksoftirqd/0]
root         5     2  0 Apr08 ?        00:00:00 [kworker/0:0H]
root         7     2  0 Apr08 ?        00:07:10 [rcu_sched]
root        39     2  0 Apr08 ?        00:00:00 [migration/0]
root        40     2  0 Apr08 ?        00:01:54 [watchdog/0]
...

当前机器上有很多的进程正在执行,在上述进程中有两个非常特殊,一个是 pid 为 1 的 /sbin/init 进程,另一个是 pid 为 2 的 kthreadd 进程,这两个进程都是被 Linux 中的上帝进程 idle 创建出来的,其中前者负责执行内核的一部分初始化工作和系统配置,也会创建一些类似 getty 的注册进程,而后者负责管理和调度其他的内核进程。

图片

如果我们在当前的 Linux 操作系统下运行一个新的 Docker 容器,并通过 exec 进入其内部的 bash 并打印其中的全部进程,我们会得到以下的结果:

root@iZ255w13cy6Z:~# docker run -it -d ubuntu
b809a2eb3630e64c581561b08ac46154878ff1c61c6519848b4a29d412215e79
root@iZ255w13cy6Z:~# docker exec -it b809a2eb3630 /bin/bash
root@b809a2eb3630:/# ps -ef
UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0 15:42 pts/0    00:00:00 /bin/bash
root         9     0  0 15:42 pts/1    00:00:00 /bin/bash
root        17     9  0 15:43 pts/1    00:00:00 ps -ef

在新的容器内部执行 ps 命令打印出了非常干净的进程列表,只有包含当前 ps -ef 在内的三个进程,在宿主机器上的几十个进程都已经消失不见了。

当前的 Docker 容器成功将容器内的进程与宿主机器中的进程隔离,如果我们在宿主机器上打印当前的全部进程时,会得到下面三条与 Docker 相关的结果:

UID        PID  PPID  C STIME TTY          TIME CMD
root     29407     1  0 Nov16 ?        00:08:38 /usr/bin/dockerd --raw-logs
root      1554 29407  0 Nov19 ?        00:03:28 docker-containerd -l unix:///var/run/docker/libcontainerd/docker-containerd.sock --metrics-interval=0 --start-timeout 2m --state-dir /var/run/docker/libcontainerd/containerd --shim docker-containerd-shim --runtime docker-runc
root      5006  1554  0 08:38 ?        00:00:00 docker-containerd-shim b809a2eb3630e64c581561b08ac46154878ff1c61c6519848b4a29d412215e79 /var/run/docker/libcontainerd/b809a2eb3630e64c581561b08ac46154878ff1c61c6519848b4a29d412215e79 docker-runc

在当前的宿主机器上,可能就存在由上述的不同进程构成的进程树:

图片

这就是在使用 clone(2) 创建新进程时传入 CLONE_NEWPID 实现的,也就是使用 Linux 的命名空间实现进程的隔离,Docker 容器内部的任意进程都对宿主机器的进程一无所知。

containerRouter.postContainersStart
└── daemon.ContainerStart
    └── daemon.createSpec
        └── setNamespaces
            └── setNamespace

Docker 的容器就是使用上述技术实现与宿主机器的进程隔离,当我们每次运行 docker run 或者 docker start 时,都会在下面的方法中创建一个用于设置进程间隔离的 Spec:

func (daemon *Daemon) createSpec(c *container.Container) (*specs.Spec, error) {
    s := oci.DefaultSpec()

    // ...
    if err := setNamespaces(daemon, &s, c); err != nil {
        return nil, fmt.Errorf("linux spec namespaces: %v", err)
    }

    return &s, nil
}

在 setNamespaces 方法中不仅会设置进程相关的命名空间,还会设置与用户、网络、IPC 以及 UTS 相关的命名空间:

func setNamespaces(daemon *Daemon, s *specs.Spec, c *container.Container) error {
    // user
    // network
    // ipc
    // uts

    // pid
    if c.HostConfig.PidMode.IsContainer() {
        ns := specs.LinuxNamespace{Type: "pid"}
        pc, err := daemon.getPidContainer(c)
        if err != nil {
            return err
        }
        ns.Path = fmt.Sprintf("/proc/%d/ns/pid", pc.State.GetPID())
        setNamespace(s, ns)
    } else if c.HostConfig.PidMode.IsHost() {
        oci.RemoveNamespace(s, specs.LinuxNamespaceType("pid"))
    } else {
        ns := specs.LinuxNamespace{Type: "pid"}
        setNamespace(s, ns)
    }

    return nil
}

所有命名空间相关的设置 Spec 最后都会作为 Create 函数的入参在创建新的容器时进行设置:

daemon.containerd.Create(context.Background(), container.ID, spec, createOptions)

所有与命名空间的相关的设置都是在上述的两个函数中完成的,Docker 通过命名空间成功完成了与宿主机进程和网络的隔离。

网络

如果 Docker 的容器通过 Linux 的命名空间完成了与宿主机进程的网络隔离,但是却有没有办法通过宿主机的网络与整个互联网相连,就会产生很多限制,所以 Docker 虽然可以通过命名空间创建一个隔离的网络环境,但是 Docker 中的服务仍然需要与外界相连才能发挥作用。

每一个使用 docker run 启动的容器其实都具有单独的网络命名空间,Docker 为我们提供了四种不同的网络模式,Host、Container、None 和 Bridge 模式。

图片

在这一部分,我们将介绍 Docker 默认的网络设置模式:网桥模式。在这种模式下,除了分配隔离的网络命名空间之外,Docker 还会为所有的容器设置 IP 地址。当 Docker 服务器在主机上启动之后会创建新的虚拟网桥 docker0,随后在该主机上启动的全部服务在某人情况下都与该网桥相连。

图片

在默认情况下,每一个容器在创建时都会创建一对虚拟网卡,两个虚拟网卡组成了数据的通道,其中一个会放在创建的容器中,会加入到名为 docker0 网桥中。我们可以使用如下的命令来查看当前网桥的接口:

$ brctl show
bridge name bridge id       STP enabled interfaces
docker0     8000.0242a6654980   no      veth3e84d4f
                                        veth9953b75

docker0 会为每一个容器分配一个新的 IP 地址并将 docker0 的 IP 地址设置为默认的网关。网桥 docker0 通过 iptables 中的配置与宿主机器上的网卡相连,所有符合条件的请求都会通过 iptables 转发到 docker0 并由网桥分发给对应的机器。

$ iptables -t nat -L
Chain PREROUTING (policy ACCEPT)
target     prot opt source               destination
DOCKER     all  --  anywhere             anywhere             ADDRTYPE match dst-type LOCAL

Chain DOCKER (2 references)
target     prot opt source               destination
RETURN     all  --  anywhere             anywhere

我们在当前的机器上使用 docker run -d -p 6379:6379 redis 命令启动了一个新的 Redis 容器,在这之后我们再查看当前 iptables 的 NAT 配置就会看到在 DOCKER 的链中出现了一条新的规则:

DNAT       tcp  --  anywhere             anywhere             tcp dpt:6379 to:192.168.0.4:6379

上述规则会将从任意源发送到当前机器 6379 端口的 TCP 包转发到 192.168.0.4:6379 所在的地址上。

这个地址其实也是 Docker 为 Redis 服务分配的 IP 地址,如果我们在当前机器上直接 ping 这个 IP 地址就会发现它是可以访问到的:

$ ping 192.168.0.4
PING 192.168.0.4 (192.168.0.4) 56(84) bytes of data.
64 bytes from 192.168.0.4: icmp_seq=1 ttl=64 time=0.069 ms
64 bytes from 192.168.0.4: icmp_seq=2 ttl=64 time=0.043 ms
^C
--- 192.168.0.4 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.043/0.056/0.069/0.013 ms

从上述的一系列现象,我们就可以推测出 Docker 是如何将容器的内部的端口暴露出来并对数据包进行转发的了;当有 Docker 的容器需要将服务暴露给宿主机器,就会为容器分配一个 IP 地址,同时向 iptables 中追加一条新的规则。

图片

当我们使用 redis-cli 在宿主机器的命令行中访问 127.0.0.1:6379 的地址时,经过 iptables 的 NAT PREROUTING 将 ip 地址定向到了 192.168.0.4,重定向过的数据包就可以通过 iptables 中的 FILTER 配置,最终在 NAT POSTROUTING 阶段将 ip 地址伪装成 127.0.0.1,到这里虽然从外面看起来我们请求的是 127.0.0.1:6379,但是实际上请求的已经是 Docker 容器暴露出的端口了。

$ redis-cli -h 127.0.0.1 -p 6379 ping
PONG

Docker 通过 Linux 的命名空间实现了网络的隔离,又通过 iptables 进行数据包转发,让 Docker 容器能够优雅地为宿主机器或者其他容器提供服务。

libnetwork

整个网络部分的功能都是通过 Docker 拆分出来的 libnetwork 实现的,它提供了一个连接不同容器的实现,同时也能够为应用给出一个能够提供一致的编程接口和网络层抽象的容器网络模型

The goal of libnetwork is to deliver a robust Container Network Model that provides a consistent programming interface and the required network abstractions for applications.

libnetwork 中最重要的概念,容器网络模型由以下的几个主要组件组成,分别是 Sandbox、Endpoint 和 Network:

图片

在容器网络模型中,每一个容器内部都包含一个 Sandbox,其中存储着当前容器的网络栈配置,包括容器的接口、路由表和 DNS 设置,Linux 使用网络命名空间实现这个 Sandbox,每一个 Sandbox 中都可能会有一个或多个 Endpoint,在 Linux 上就是一个虚拟的网卡 veth,Sandbox 通过 Endpoint 加入到对应的网络中,这里的网络可能就是我们在上面提到的 Linux 网桥或者 VLAN。

想要获得更多与 libnetwork 或者容器网络模型相关的信息,可以阅读 Design · libnetwork 了解更多信息,当然也可以阅读源代码了解不同 OS 对容器网络模型的不同实现。

挂载点

虽然我们已经通过 Linux 的命名空间解决了进程和网络隔离的问题,在 Docker 进程中我们已经没有办法访问宿主机器上的其他进程并且限制了网络的访问,但是 Docker 容器中的进程仍然能够访问或者修改宿主机器上的其他目录,这是我们不希望看到的。

在新的进程中创建隔离的挂载点命名空间需要在 clone 函数中传入 CLONE_NEWNS,这样子进程就能得到父进程挂载点的拷贝,如果不传入这个参数子进程对文件系统的读写都会同步回父进程以及整个主机的文件系统

如果一个容器需要启动,那么它一定需要提供一个根文件系统(rootfs),容器需要使用这个文件系统来创建一个新的进程,所有二进制的执行都必须在这个根文件系统中。

图片

想要正常启动一个容器就需要在 rootfs 中挂载以上的几个特定的目录,除了上述的几个目录需要挂载之外我们还需要建立一些符号链接保证系统 IO 不会出现问题。

图片

为了保证当前的容器进程没有办法访问宿主机器上其他目录,我们在这里还需要通过 libcotainer 提供的 pivor_root 或者 chroot 函数改变进程能够访问个文件目录的根节点。

// pivor_root
put_old = mkdir(...);
pivot_root(rootfs, put_old);
chdir("/");
unmount(put_old, MS_DETACH);
rmdir(put_old);

// chroot
mount(rootfs, "/", NULL, MS_MOVE, NULL);
chroot(".");
chdir("/");

到这里我们就将容器需要的目录挂载到了容器中,同时也禁止当前的容器进程访问宿主机器上的其他目录,保证了不同文件系统的隔离。

这一部分的内容是作者在 libcontainer 中的 SPEC.md 文件中找到的,其中包含了 Docker 使用的文件系统的说明,对于 Docker 是否真的使用 chroot 来确保当前的进程无法访问宿主机器的目录,作者其实也没有确切的答案,一是 Docker 项目的代码太多庞大,不知道该从何入手,作者尝试通过 Google 查找相关的结果,但是既找到了无人回答的 问题,也得到了与 SPEC 中的描述有冲突的 答案 ,如果各位读者有明确的答案可以在博客下面留言,非常感谢。

chroot

在这里不得不简单介绍一下 chroot(change root),在 Linux 系统中,系统默认的目录就都是以 / 也就是根目录开头的,chroot 的使用能够改变当前的系统根目录结构,通过改变当前系统的根目录,我们能够限制用户的权利,在新的根目录下并不能够访问旧系统根目录的结构个文件,也就建立了一个与原系统完全隔离的目录结构。

与 chroot 的相关内容部分来自 理解 chroot 一文,各位读者可以阅读这篇文章获得更详细的信息。

CGroups

我们通过 Linux 的命名空间为新创建的进程隔离了文件系统、网络并与宿主机器之间的进程相互隔离,但是命名空间并不能够为我们提供物理资源上的隔离,比如 CPU 或者内存,如果在同一台机器上运行了多个对彼此以及宿主机器一无所知的『容器』,这些容器却共同占用了宿主机器的物理资源。

图片

如果其中的某一个容器正在执行 CPU 密集型的任务,那么就会影响其他容器中任务的性能与执行效率,导致多个容器相互影响并且抢占资源。如何对多个容器的资源使用进行限制就成了解决进程虚拟资源隔离之后的主要问题,而 Control Groups(简称 CGroups)就是能够隔离宿主机器上的物理资源,例如 CPU、内存、磁盘 I/O 和网络带宽。

每一个 CGroup 都是一组被相同的标准和参数限制的进程,不同的 CGroup 之间是有层级关系的,也就是说它们之间可以从父类继承一些用于限制资源使用的标准和参数。

图片

Linux 的 CGroup 能够为一组进程分配资源,也就是我们在上面提到的 CPU、内存、网络带宽等资源,通过对资源的分配,CGroup 能够提供以下的几种功能:

图片

在 CGroup 中,所有的任务就是一个系统的一个进程,而 CGroup 就是一组按照某种标准划分的进程,在 CGroup 这种机制中,所有的资源控制都是以 CGroup 作为单位实现的,每一个进程都可以随时加入一个 CGroup 也可以随时退出一个 CGroup。

-- CGroup 介绍、应用实例及原理描述

Linux 使用文件系统来实现 CGroup,我们可以直接使用下面的命令查看当前的 CGroup 中有哪些子系统:

$ lssubsys -m
cpuset /sys/fs/cgroup/cpuset
cpu /sys/fs/cgroup/cpu
cpuacct /sys/fs/cgroup/cpuacct
memory /sys/fs/cgroup/memory
devices /sys/fs/cgroup/devices
freezer /sys/fs/cgroup/freezer
blkio /sys/fs/cgroup/blkio
perf_event /sys/fs/cgroup/perf_event
hugetlb /sys/fs/cgroup/hugetlb

大多数 Linux 的发行版都有着非常相似的子系统,而之所以将上面的 cpuset、cpu 等东西称作子系统,是因为它们能够为对应的控制组分配资源并限制资源的使用。

如果我们想要创建一个新的 cgroup 只需要在想要分配或者限制资源的子系统下面创建一个新的文件夹,然后这个文件夹下就会自动出现很多的内容,如果你在 Linux 上安装了 Docker,你就会发现所有子系统的目录下都有一个名为 docker 的文件夹:

$ ls cpu
cgroup.clone_children
...
cpu.stat
docker
notify_on_release
release_agent
tasks

$ ls cpu/docker/
9c3057f1291b53fd54a3d12023d2644efe6a7db6ddf330436ae73ac92d401cf1
cgroup.clone_children
...
cpu.stat
notify_on_release
release_agent
tasks

9c3057xxx 其实就是我们运行的一个 Docker 容器,启动这个容器时,Docker 会为这个容器创建一个与容器标识符相同的 CGroup,在当前的主机上 CGroup 就会有以下的层级关系:

图片

每一个 CGroup 下面都有一个 tasks 文件,其中存储着属于当前控制组的所有进程的 pid,作为负责 cpu 的子系统,cpu.cfs_quota_us 文件中的内容能够对 CPU 的使用作出限制,如果当前文件的内容为 50000,那么当前控制组中的全部进程的 CPU 占用率不能超过 50%。

如果系统管理员想要控制 Docker 某个容器的资源使用率就可以在 docker 这个父控制组下面找到对应的子控制组并且改变它们对应文件的内容,当然我们也可以直接在程序运行时就使用参数,让 Docker 进程去改变相应文件中的内容。

$ docker run -it -d --cpu-quota=50000 busybox
53861305258ecdd7f5d2a3240af694aec9adb91cd4c7e210b757f71153cdd274
$ cd 53861305258ecdd7f5d2a3240af694aec9adb91cd4c7e210b757f71153cdd274/
$ ls
cgroup.clone_children  cgroup.event_control  cgroup.procs  cpu.cfs_period_us  cpu.cfs_quota_us  cpu.shares  cpu.stat  notify_on_release  tasks
$ cat cpu.cfs_quota_us
50000

当我们使用 Docker 关闭掉正在运行的容器时,Docker 的子控制组对应的文件夹也会被 Docker 进程移除,Docker 在使用 CGroup 时其实也只是做了一些创建文件夹改变文件内容的文件操作,不过 CGroup 的使用也确实解决了我们限制子容器资源占用的问题,系统管理员能够为多个容器合理的分配资源并且不会出现多个容器互相抢占资源的问题。

UnionFS

Linux 的命名空间和控制组分别解决了不同资源隔离的问题,前者解决了进程、网络以及文件系统的隔离,后者实现了 CPU、内存等资源的隔离,但是在 Docker 中还有另一个非常重要的问题需要解决 - 也就是镜像。

镜像到底是什么,它又是如何组成和组织的是作者使用 Docker 以来的一段时间内一直比较让作者感到困惑的问题,我们可以使用 docker run 非常轻松地从远程下载 Docker 的镜像并在本地运行。

Docker 镜像其实本质就是一个压缩包,我们可以使用下面的命令将一个 Docker 镜像中的文件导出:

$ docker export $(docker create busybox) | tar -C rootfs -xvf -
$ ls
bin  dev  etc  home proc root sys  tmp  usr  var

你可以看到这个 busybox 镜像中的目录结构与 Linux 操作系统的根目录中的内容并没有太多的区别,可以说 Docker 镜像就是一个文件

存储驱动

Docker 使用了一系列不同的存储驱动管理镜像内的文件系统并运行容器,这些存储驱动与 Docker 卷(volume)有些不同,存储引擎管理着能够在多个容器之间共享的存储。

想要理解 Docker 使用的存储驱动,我们首先需要理解 Docker 是如何构建并且存储镜像的,也需要明白 Docker 的镜像是如何被每一个容器所使用的;Docker 中的每一个镜像都是由一系列只读的层组成的,Dockerfile 中的每一个命令都会在已有的只读层上创建一个新的层:

FROM ubuntu:15.04
COPY . /app
RUN make /app
CMD python /app/app.py

容器中的每一层都只对当前容器进行了非常小的修改,上述的 Dockerfile 文件会构建一个拥有四层 layer 的镜像:

图片

当镜像被 docker run 命令创建时就会在镜像的最上层添加一个可写的层,也就是容器层,所有对于运行时容器的修改其实都是对这个容器读写层的修改。

容器和镜像的区别就在于,所有的镜像都是只读的,而每一个容器其实等于镜像加上一个可读写的层,也就是同一个镜像可以对应多个容器。

图片

AUFS

UnionFS 其实是一种为 Linux 操作系统设计的用于把多个文件系统『联合』到同一个挂载点的文件系统服务。而 AUFS 即 Advanced UnionFS 其实就是 UnionFS 的升级版,它能够提供更优秀的性能和效率。

AUFS 作为联合文件系统,它能够将不同文件夹中的层联合(Union)到了同一个文件夹中,这些文件夹在 AUFS 中称作分支,整个『联合』的过程被称为联合挂载(Union Mount)

图片

每一个镜像层或者容器层都是 /var/lib/docker/ 目录下的一个子文件夹;在 Docker 中,所有镜像层和容器层的内容都存储在 /var/lib/docker/aufs/diff/ 目录中:

$ ls /var/lib/docker/aufs/diff/00adcccc1a55a36a610a6ebb3e07cc35577f2f5a3b671be3dbc0e74db9ca691c       93604f232a831b22aeb372d5b11af8c8779feb96590a6dc36a80140e38e764d8
00adcccc1a55a36a610a6ebb3e07cc35577f2f5a3b671be3dbc0e74db9ca691c-init  93604f232a831b22aeb372d5b11af8c8779feb96590a6dc36a80140e38e764d8-init
019a8283e2ff6fca8d0a07884c78b41662979f848190f0658813bb6a9a464a90       93b06191602b7934fafc984fbacae02911b579769d0debd89cf2a032e7f35cfa
...

而 /var/lib/docker/aufs/layers/ 中存储着镜像层的元数据,每一个文件都保存着镜像层的元数据,最后的 /var/lib/docker/aufs/mnt/ 包含镜像或者容器层的挂载点,最终会被 Docker 通过联合的方式进行组装。

图片

上面的这张图片非常好的展示了组装的过程,每一个镜像层都是建立在另一个镜像层之上的,同时所有的镜像层都是只读的,只有每个容器最顶层的容器层才可以被用户直接读写,所有的容器都建立在一些底层服务(Kernel)上,包括命名空间、控制组、rootfs 等等,这种容器的组装方式提供了非常大的灵活性,只读的镜像层通过共享也能够减少磁盘的占用。

其他存储驱动

AUFS 只是 Docker 使用的存储驱动的一种,除了 AUFS 之外,Docker 还支持了不同的存储驱动,包括 aufsdevicemapperoverlay2zfs 和 vfs 等等,在最新的 Docker 中,overlay2 取代了 aufs 成为了推荐的存储驱动,但是在没有 overlay2 驱动的机器上仍然会使用 aufs 作为 Docker 的默认驱动。

图片

不同的存储驱动在存储镜像和容器文件时也有着完全不同的实现,有兴趣的读者可以在 Docker 的官方文档 Select a storage driver 中找到相应的内容。

想要查看当前系统的 Docker 上使用了哪种存储驱动只需要使用以下的命令就能得到相对应的信息:

$ docker info | grep Storage
Storage Driver: aufs

作者的这台 Ubuntu 上由于没有 overlay2 存储驱动,所以使用 aufs 作为 Docker 的默认存储驱动。

总结

Docker 目前已经成为了非常主流的技术,已经在很多成熟公司的生产环境中使用,但是 Docker 的核心技术其实已经有很多年的历史了,Linux 命名空间、控制组和 UnionFS 三大技术支撑了目前 Docker 的实现,也是 Docker 能够出现的最重要原因。

作者在学习 Docker 实现原理的过程中查阅了非常多的资料,从中也学习到了很多与 Linux 操作系统相关的知识,不过由于 Docker 目前的代码库实在是太过庞大,想要从源代码的角度完全理解 Docker 实现的细节已经是非常困难的了,但是如果各位读者真的对其实现细节感兴趣,可以从 Docker CE 的源代码开始了解 Docker 的原理。

Reference

  • Chapter 4. Docker Fundamentals · Using Docker by Adrian Mount

  • TECHNIQUES BEHIND DOCKER

  • Docker overview

  • Unifying filesystems with union mounts

  • DOCKER 基础技术:AUFS

  • RESOURCE MANAGEMENT GUIDE

  • Kernel Korner - Unionfs: Bringing Filesystems Together

  • Union file systems: Implementations, part I

  • IMPROVING DOCKER WITH UNIKERNELS: INTRODUCING HYPERKIT, VPNKIT AND DATAKIT

  • Separation Anxiety: A Tutorial for Isolating Your System with Linux Namespaces

  • 理解 chroot

  • Linux Init Process / PC Boot Procedure

  • Docker 网络详解及 pipework 源码解读与实践

  • Understand container communication

  • Docker Bridge Network Driver Architecture

  • Linux Firewall Tutorial: IPTables Tables, Chains, Rules Fundamentals

  • Traversing of tables and chains

  • Docker 网络部分执行流分析(Libnetwork 源码解读)

  • Libnetwork Design

  • 剖析 Docker 文件系统:Aufs与Devicemapper

  • Linux - understanding the mount namespace & clone CLONE_NEWNS flag

  • Docker 背后的内核知识 —— Namespace 资源隔离

  • Infrastructure for container projects

  • Spec · libcontainer

  • DOCKER 基础技术:LINUX NAMESPACE(上)

  • DOCKER 基础技术:LINUX CGROUP

  • 《自己动手写Docker》书摘之三:Linux UnionFS

  • Introduction to Docker

  • Understand images, containers, and storage drivers

  • Use the AUFS storage driver

#云原生技术 (qq.com)

#微服务设计和思考 (qq.com)

还不懂Docker?一个故事安排的明明白白!

程序员受苦久矣

多年前的一个夜晚,风雨大作,一个名叫Docker的年轻人来到Linux帝国拜见帝国的长老。

图片

“Linux长老,天下程序员苦于应用部署久矣,我要改变这一现状,希望长老你能帮帮我”

长老回答:“哦,小小年纪,口气不小,先请入座,你有何所求,愿闻其详”

Docker坐下后开始侃侃而谈:“当今天下,应用开发、测试、部署,各种库的依赖纷繁复杂,再加上版本之间的差异,经常出现在开发环境运行正常,而到测试环境和线上环境就出问题的现象,程序员们饱受此苦,是时候改变这一状况了。”

图片

Docker回头看了一眼长老接着说到:“我想做一个虚拟的容器,让应用程序们运行其中,将它们需要的依赖环境整体打包,以便在不同机器上移植后,仍然能提供一致的运行环境,彻底将程序员们解放出来!”

Linux长老听闻,微微点头:“年轻人想法不错,不过听你的描述,好像虚拟机就能解决这个问题。将应用和所依赖的环境部署到虚拟机中,然后做个快照,直接部署虚拟机不就可以了吗?”

Docker连连摇头说到:“长老有所不知,虚拟机这家伙笨重如牛,体积又大,动不动就是以G为单位的大小,因为它里面要运行一个完整的操作系统,所以跑起来格外费劲,慢就不说了,还非常占资源,一台机器上跑不了几台虚拟机就把性能拖垮了!而我想要做一个轻量级的虚拟容器只提供一个运行环境,不用运行一个操作系统,所有容器中的系统内核还是和外面的宿主机共用的,这样就可以批量复制很多个容器,轻便又快捷

图片

Linux长老站了起来,来回踱步了几圈,思考片刻之后,忽然拍桌子大声说到:“真是个好想法,这个项目我投了!”

Docker眼里见光,喜上眉梢,“这事还真离不开长老的帮助,要实现我说的目标,对进程的管理隔离都至关重要,还望长老助我一臂之力!”

“你稍等”,Linux长老转身回到内屋。没多久就出来了,手里拿了些什么东西。

“年轻人,回去之后,尽管放手大干,我赐你三个锦囊,若遇难题,可依次拆开,必有大用”

图片

Docker开心的收下了三个锦囊,拜别Linux长老后,冒雨而归。

锦囊1:chroot & pivot_root

受到长老的鼓励,Docker充满了干劲,很快就准备启动他的项目。

作为一个容器,首要任务就是限制容器中进程的活动范围——能访问的文件系统目录。决不能让容器中的进程去肆意访问真实的系统目录,得将他们的活动范围划定到一个指定的区域,不得越雷池半步!

到底该如何限制这些进程的活动区域呢?Docker遇到了第一个难题。

苦思良久未果,Docker终于忍不住拆开了Linux长老送给自己的第一个锦囊,只见上面写了两个函数的名字:chroot & pivot_root

Docker从未使用过这两个函数,于是在Linux帝国四处打听它们的作用。后来得知,通过这两个函数,可以修改进程和系统的根目录到一个新的位置。Docker大喜,长老真是诚不欺我!

有了这两个函数,Docker开始想办法怎么来“伪造”一个文件系统来欺骗容器中的进程。

图片

为了不露出破绽,Docker很聪明,用操作系统镜像文件挂载到容器进程的根目录下,变成容器的rootfs,和真实系统目录一模一样,足可以以假乱真:

$ ls /
bin dev etc home lib lib64 mnt opt proc root run sbin sys tmp usr var

锦囊2:namespace

文件系统的问题总算解决了,但是Docker不敢懈怠,因为在他心里,还有一个大问题一直困扰着他,那就是如何把真实系统所在的世界隐藏起来,别让容器中的进程看到。

比如进程列表、网络设备、用户列表这些,是决不能让容器中的进程知道的,得让他们看到的世界是一个干净如新的系统。

Docker心里清楚,自己虽然叫容器,但这只是表面现象,容器内的进程其实和自己一样,都是运行在宿主操作系统上面的一个个进程,想要遮住这些进程的眼睛,瞒天过海,实在不是什么容易的事情。

Docker想过用HOOK的方式,欺骗进程,但实施起来工作太过复杂,兼容性差,稳定性也得不到保障,思来想去也没想到什么好的主意。

正在一筹莫展之际,Docker又想起了Linux长老送给自己的锦囊,他赶紧拿了出来,打开了第二个锦囊,只见上面写着:namespace

Docker还是不解其中之意,于是又在Linux帝国到处打听什么是namespace。

经过一阵琢磨,Docker总算是明白了,原来这个namespace是帝国提供的一种机制,通过它可以划定一个个的命名空间,然后把进程划分到这些命名空间中。

图片

而每个命名空间都是独立存在的,命名空间里面的进程都无法看到空间之外的进程、用户、网络等等信息。

这不正是Docker想要的吗?真是踏破铁鞋无觅处,得来全不费功夫!

Docker赶紧加班加点,用上了这个namespace,将进程的“视野”锁定在容器规定的范围内,如此一来,容器内的进程彷佛被施上了障眼法,再也看不到外面的世界。

锦囊3:CGroup

文件系统和进程隔离的问题都解决了,Docker心里的石头总算是放下了。心里着急着想测试自己的容器,可又好奇这最后一个锦囊写的是什么,于是打开了第三个锦囊,只见上面写着:CGroup

这又是什么东西?Docker仍然看不懂,不过这一次管不了那么许多了,先运行起来再说。

试着运行了一段时间,一切都在Docker的计划之中,容器中的进程都能正常的运行,都被他构建的虚拟文件系统和隔离出来的系统环境给欺骗了,Docker高兴坏了!

很快,Docker就开始在Linux帝国推广自己的容器技术,结果大受欢迎,收获了无数粉丝,连nginxredis等一众大佬都纷纷入驻。

然而,鲜花与掌声的背后,Docker却不知道自己即将大难临头。

这天,Linux帝国内存管理部的人扣下了Docker准备“处决”掉他,Docker一脸诧异的问到,“到底发生了什么事,为什么要对我下手?”

管理人员厉声说到:“帝国管理的内存快被一个叫Redis的家伙用光了,现在要挑选一些进程来杀掉,不好意思,你中奖了”

图片

Redis?这家伙不是我容器里的进程吗?Docker心中一惊!

“两位大人,我认识帝国的长老,麻烦通融通融,找别人去吧,Redis那家伙,我有办法收拾他”

没想到他还认识帝国长老,管理人员犹豫了一下,就放了Docker到别处去了。

惊魂未定的Docker,思来想去,如果不对容器中的进程加以管束,那简直太危险了!除了内存,还有CPU、硬盘、网络等等资源,如果某个容器进程霸占着CPU不放手,又或者某个容器进程疯狂写硬盘,那迟早得连累到自己身上。看来必须得对这些进程进行管控,防止他们干出出格的事来。

这时候,他想起了Linux长老的第三个锦囊:CGroup!说不定能解这燃眉之急。

经过一番研究,Docker如获至宝,原来这CGroup和namespace类似,也是Linux帝国的一套机制,通过它可以划定一个个的分组,然后限制每个分组能够使用的资源,比如内存的上限值、CPU的使用率、硬盘空间总量等等。系统内核会自动检查和限制这些分组中的进程资源使用量。

图片

Linux长老这三个锦囊简直太贴心了,一个比一个有用,Docker内心充满了感激。

随后,Docker加上了CGroup技术,加强了对容器中的进程管控,这才松了一口气。

在Linux长老三个锦囊妙计的加持下,Docker可谓风光一时,成为了Linux帝国的大名人。

然而,能力越大,责任越大,让Docker没想到的是,新的挑战还在后面。

 

posted @ 2022-11-19 15:10  CharyGao  阅读(386)  评论(0编辑  收藏  举报