Java语言中Object对象的hashCode()取值的底层算法是怎样实现的?,object hashcode,图说Java —— 理解Java机制最受欢迎的8幅图

http://www.bkjia.com/ASPjc/919437.html

 

 Java语言中,Object对象有个特殊的方法:hashcode(), hashcode()表示的是JVM虚拟机为这个Object对象分配的一个int类型的数值,JVM会使用对象的hashcode值来提高对HashMap、Hashtable哈希表存取对象的使用效率。

      关于Object对象的hashCode()返回值,网上对它就是一个简单的描述:“JVM根据某种策略生成的”,那么这种策略到底是什么呢?我有一个毛病,遇到这种含糊其辞的东西,就想探个究竟,所以,本文就将hashCode()本地方法的实现给扒出来,也给大家在了解hashCode()的过程中提供一点点帮助吧。

      本文将根据openJDK 7源码,向展示Java语言中的Object对象的hashCode() 生成的神秘面纱,我将一步一步地向读者介绍Java Object 的hashcode()方法到底底层调用了什么函数。为了更好地了解这个过程,你可以自己下载openJDK 7 源码,亲自查看和跟踪源码,了解hashCode()的生成过程:

         openJDK 7 下载地址1:http://download.java.net/openjdk/jdk7 (官网,下载速度较慢)

         openJDK 7 下载地址2 :openjdk-7-fcs-src-b147-27_jun_2011.zip (csdn 网友提供的资源,很不错)

        

1.查看openJDK 关于 java.lang.Object类及其hashcode()方法的定义:

   进入openjdk\jdk\src\share\classes\java\lang 目录下,可以看到 Object.java源码,打开,查看hashCode()的定义如下所示:

 

public native int hashCode();

    即该方法是一个本地方法,Java将调用本地方法库对此方法的实现。由于Object类中有JNI方法调用,按照JNI的规则,应当生成JNI 的头文件,在此目录下执行 javah -jni java.lang.Object  指令,将生成一个 java_lang_Object.h 头文件,该头文件将在后面用到它

   java_lang_Object.h头文件关于hashcode方法的信息如下所示:

 

/*
 * Class:     java_lang_Object
 * Method:    hashCode
 * Signature: ()I
 */
JNIEXPORT jint JNICALL Java_java_lang_Object_hashCode
  (JNIEnv *, jobject);



 

2. Object对象的hashCode()方法在C语言文件Object.c中实现

  打开openjdk\jdk\src\share\native\java\lang\目录,查看Object.c文件,可以看到hashCode()的方法被注册成有JVM_IHashCode方法指针来处理:

 

#include <stdio.h>
#include <signal.h>
#include <limits.h>

#include "jni.h"
#include "jni_util.h"
#include "jvm.h"

#include "java_lang_Object.h"

static JNINativeMethod methods[] = {
    {"hashCode",    "()I",                    (void *)&JVM_IHashCode},//hashcode的方法指针JVM_IHashCode
    {"wait",        "(J)V",                   (void *)&JVM_MonitorWait},
    {"notify",      "()V",                    (void *)&JVM_MonitorNotify},
    {"notifyAll",   "()V",                    (void *)&JVM_MonitorNotifyAll},
    {"clone",       "()Ljava/lang/Object;",   (void *)&JVM_Clone},
};

JNIEXPORT void JNICALL
Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
{
    (*env)->RegisterNatives(env, cls,
                            methods, sizeof(methods)/sizeof(methods[0]));
}

JNIEXPORT jclass JNICALL
Java_java_lang_Object_getClass(JNIEnv *env, jobject this)
{
    if (this == NULL) {
        JNU_ThrowNullPointerException(env, NULL);
        return 0;
    } else {
        return (*env)->GetObjectClass(env, this);
    }
}

 

 

3.JVM_IHashCode方法指针在 openjdk\hotspot\src\share\vm\prims\jvm.cpp中定义,如下:

 

JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
  JVMWrapper("JVM_IHashCode");
  // as implemented in the classic virtual machine; return 0 if object is NULL
  return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
JVM_END

  如上可以看出,JVM_IHashCode方法中调用了ObjectSynchronizer::FastHashCode方法

 

4. ObjectSynchronizer::fashHashCode方法的实现:

     ObjectSynchronizer::fashHashCode()方法在openjdk\hotspot\src\share\vm\runtime\synchronizer.cpp 文件中实现,其核心代码实现如下所示:

// hashCode() generation :
//
// Possibilities:
// * MD5Digest of {obj,stwRandom}
// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
// * A DES- or AES-style SBox[] mechanism
// * One of the Phi-based schemes, such as:
//   2654435761 = 2^32 * Phi (golden ratio)
//   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
// * A variation of Marsaglia's shift-xor RNG scheme.
// * (obj ^ stwRandom) is appealing, but can result
//   in undesirable regularity in the hashCode values of adjacent objects
//   (objects allocated back-to-back, in particular).  This could potentially
//   result in hashtable collisions and reduced hashtable efficiency.
//   There are simple ways to "diffuse" the middle address bits over the
//   generated hashCode values:
//

static inline intptr_t get_next_hash(Thread * Self, oop obj) {
  intptr_t value = 0 ;
  if (hashCode == 0) {
     // This form uses an unguarded global Park-Miller RNG,
     // so it's possible for two threads to race and generate the same RNG.
     // On MP system we'll have lots of RW access to a global, so the
     // mechanism induces lots of coherency traffic.
     value = os::random() ;
  } else
  if (hashCode == 1) {
     // This variation has the property of being stable (idempotent)
     // between STW operations.  This can be useful in some of the 1-0
     // synchronization schemes.
     intptr_t addrBits = intptr_t(obj) >> 3 ;
     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
  } else
  if (hashCode == 2) {
     value = 1 ;            // for sensitivity testing
  } else
  if (hashCode == 3) {
     value = ++GVars.hcSequence ;
  } else
  if (hashCode == 4) {
     value = intptr_t(obj) ;
  } else {
     // Marsaglia's xor-shift scheme with thread-specific state
     // This is probably the best overall implementation -- we'll
     // likely make this the default in future releases.
     unsigned t = Self->_hashStateX ;
     t ^= (t << 11) ;
     Self->_hashStateX = Self->_hashStateY ;
     Self->_hashStateY = Self->_hashStateZ ;
     Self->_hashStateZ = Self->_hashStateW ;
     unsigned v = Self->_hashStateW ;
     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
     Self->_hashStateW = v ;
     value = v ;
  }

  value &= markOopDesc::hash_mask;
  if (value == 0) value = 0xBAD ;
  assert (value != markOopDesc::no_hash, "invariant") ;
  TEVENT (hashCode: GENERATE) ;
  return value;
}
//   ObjectSynchronizer::FastHashCode方法的实现,该方法最终会返回我们期望已久的hashcode
intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
  if (UseBiasedLocking) {
    // NOTE: many places throughout the JVM do not expect a safepoint
    // to be taken here, in particular most operations on perm gen
    // objects. However, we only ever bias Java instances and all of
    // the call sites of identity_hash that might revoke biases have
    // been checked to make sure they can handle a safepoint. The
    // added check of the bias pattern is to avoid useless calls to
    // thread-local storage.
    if (obj->mark()->has_bias_pattern()) {
      // Box and unbox the raw reference just in case we cause a STW safepoint.
      Handle hobj (Self, obj) ;
      // Relaxing assertion for bug 6320749.
      assert (Universe::verify_in_progress() ||
              !SafepointSynchronize::is_at_safepoint(),
             "biases should not be seen by VM thread here");
      BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
      obj = hobj() ;
      assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
    }
  }

  // hashCode() is a heap mutator ...
  // Relaxing assertion for bug 6320749.
  assert (Universe::verify_in_progress() ||
          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  assert (Universe::verify_in_progress() ||
          Self->is_Java_thread() , "invariant") ;
  assert (Universe::verify_in_progress() ||
         ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;

  ObjectMonitor* monitor = NULL;
  markOop temp, test;
  intptr_t hash;
  markOop mark = ReadStableMark (obj);

  // object should remain ineligible for biased locking
  assert (!mark->has_bias_pattern(), "invariant") ;

  if (mark->is_neutral()) {
    hash = mark->hash();              // this is a normal header
    if (hash) {                       // if it has hash, just return it
      return hash;
    }
    hash = get_next_hash(Self, obj);  // allocate a new hash code
    temp = mark->copy_set_hash(hash); // merge the hash code into header
    // use (machine word version) atomic operation to install the hash
    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
    if (test == mark) {
      return hash;
    }
    // If atomic operation failed, we must inflate the header
    // into heavy weight monitor. We could add more code here
    // for fast path, but it does not worth the complexity.
  } else if (mark->has_monitor()) {
    monitor = mark->monitor();
    temp = monitor->header();
    assert (temp->is_neutral(), "invariant") ;
    hash = temp->hash();
    if (hash) {
      return hash;
    }
    // Skip to the following code to reduce code size
  } else if (Self->is_lock_owned((address)mark->locker())) {
    temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
    assert (temp->is_neutral(), "invariant") ;
    hash = temp->hash();              // by current thread, check if the displaced
    if (hash) {                       // header contains hash code
      return hash;
    }
    // WARNING:
    //   The displaced header is strictly immutable.
    // It can NOT be changed in ANY cases. So we have
    // to inflate the header into heavyweight monitor
    // even the current thread owns the lock. The reason
    // is the BasicLock (stack slot) will be asynchronously
    // read by other threads during the inflate() function.
    // Any change to stack may not propagate to other threads
    // correctly.
  }

  // Inflate the monitor to set hash code
  monitor = ObjectSynchronizer::inflate(Self, obj);
  // Load displaced header and check it has hash code
  mark = monitor->header();
  assert (mark->is_neutral(), "invariant") ;
  hash = mark->hash();
  if (hash == 0) {
    hash = get_next_hash(Self, obj);
    temp = mark->copy_set_hash(hash); // merge hash code into header
    assert (temp->is_neutral(), "invariant") ;
    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
    if (test != mark) {
      // The only update to the header in the monitor (outside GC)
      // is install the hash code. If someone add new usage of
      // displaced header, please update this code
      hash = test->hash();
      assert (test->is_neutral(), "invariant") ;
      assert (hash != 0, "Trivial unexpected object/monitor header usage.");
    }
  }
  // We finally get the hash  ,看到这句话,就特别兴奋,WE FINALLY GET THE HASH!!!!
  return hash;
}

    

 

       好了,经过上述如此复杂步骤,终于生成了我们的hashcode了,上述的代码是使用的C++实现的,我是看不懂啦,不过有一点可以确定:

 

           Java 中Object对象的hashcode()返回值一定不会是Object对象的内存地址这么简单!

       即hashcode()返回的不是对象在内存中的地址。

Java核心要义_tianjinsong的专栏-CSDN博客

http://blog.csdn.net/renfufei/article/details/13594715

 

原文链接:  Top 8 Diagrams for Understanding Java

翻译人员: 铁锚

翻译时间: 2013年10月29日

 

世间总是一图胜过千万言!

下面的8幅图来自于 Program Creek 的 Java教程 ,目前这是该网站最受欢迎的文章.
希望本文能帮你回顾你已经知道的那些知识。如果图片讲解的不够清晰,你可能需要阅读详细的文章或者进行搜索。

1. String对象不可改变的特性

(详情请点击上面的标题查看)

下图显示了如下代码运行的过程:

 

[java]  view plain  copy 
 
  在CODE上查看代码片 派生到我的代码片
 
  1. String s = "abcd";  
  2. s = s.concat("ef");  

中文参考: Java String 详解 

 

图1

2. equals()与hashCode()方法协作约定

HashCode(哈希编码,散列码)是设计了用来提高性能的. 
equals()与hashCode()方法之间的关系可以概括为:
2.1 如果两个对象相等(equal),那么必须拥有相同的哈希码(hash code)
2.2 即使两个对象有相同的哈希值(hash code),他们不一定相等.
中文参考: HashMap的实现原理

 

 

图2



3. Java 异常类层次结构
粉红色的是受检查的异常(checked exceptions),其必须被 try{}catch语句块所捕获,或者在方法签名里通过throws子句声明.
另一类异常是运行时异常(runtime exceptions),需要程序员自己分析代码决定是否捕获和处理。
而声明为Error的,则属于严重错误,需要根据业务信息进行特殊处理,Error不需要捕捉。
中文示例:  Exception

图3



4. 集合类层次结构关系
注意Collections(工具类) 和 Collection(集合顶层接口) 的区别:
中文参考:  Collections

图4.1

 

图4.2





5. 锁——Java同步的基本思想
Java同步(synchronization)机制可以用一座大楼来比喻:
中文参考:  线程同步---synchronized

图5



6.Java对象引用处理机制
别名是指多个引用指向同一个内存地址(对象实际地址,可以理解为这就是对象),甚至这些引用的类型完全不一样.

图 6



7. Java 对象在堆中的内存结构
下图显示了运行时内存中方法和对象所处的地盘
绝大多数情况下:对象(及其属性域)都保存在堆里面,而方法的参数,局部变量(引用,以及6种基本类型)保存在栈里面.
当然,极特殊的情况下(极度优化[对象入栈],常量池[String],静态变量[方法区]等)也会打破这个潜规则。

图 7



8. JVM 运行时数据区
下图显示了JVM(Java虚拟机)运行时总体的数据区域划分

图8



相关文章:
1. Java中Set的contains()方法

 

2. equals()与hashCode()方法协作约定

3. Java对象引用处理机制

4. HashMap vs. TreeMap vs. Hashtable vs. LinkedHashMap

posted @ 2022-01-06 00:33  CharyGao  阅读(169)  评论(0编辑  收藏  举报