数据加密算法之国密SM4、SM3、SM2研究及Java实现

一、国密简介

国密算法是指 SM2 SM3 SM4 这3套含数据对称加解密,数据签名,数据非对称加解密功能的数据加密算法。其中 SM4 算法用于数据对称加密和解密;SM3算法用于计算数据的摘要签名;SM2算法用于数据 非对称加密和解密。在政务行业的一些政务项目或产品中,会要求使用国密算法来替代 RSA,MD5,DES等算法。

我国国家密码管理局陆续发布了一系列国产加密算法,这其中就包括 SM1、SM2、SM3 、SM4、SM7、SM9、ZUC(祖冲之加密算法)等,SM 代表商密,即商业密码,是指用于商业的、不涉及国家秘密的密码技术。SM1 和 SM7 的算法不公开,其余算法都已成为 ISO/IEC 国际标准。

在这些国产加密算法中,SM2、SM3、SM4 三种加密算法是比较常见的。

对称算法SM4支持加解密,可替代 AES等算法使用

国密即国家密码局认定的国产密码算法。主要有SM1,SM2,SM3,SM4。密钥长度和分组长度均为128位。

SM1 为对称加密。其加密强度与AES相当。该算法不公开,调用该算法时,需要通过加密芯片的接口进行调用。采用该算法已经研制了系列芯片、智能IC卡、智能密码钥匙、加密卡、加密机等安全产品,广泛应用于电子政务、电子商务及国民经济的各个应用领域(包括国家政务通、警务通等重要领域)。
SM2为非对称加密,基于ECC。该算法已公开。由于该算法基于ECC,故其签名速度与秘钥生成速度都快于RSA。ECC 256位(SM2采用的就是ECC 256位的一种)安全强度比RSA 2048位高,但运算速度快于RSA。
SM3 消息摘要。可以用MD5作为对比理解。该算法已公开。校验结果为256位。
SM4 无线局域网标准的分组数据算法对称加密,密钥长度和分组长度均为128位

由于SM1、SM4加解密的分组大小为128bit,故对消息进行加解密时,若消息长度过长,需要进行分组,要消息长度不足,则要进行填充。
国密算法的安全性

SM2算法:SM2椭圆曲线公钥密码算法是我国自主设计的公钥密码算法,包括SM2-1椭圆曲线数字签名算法,SM2-2椭圆曲线密钥交换协议,SM2-3椭圆曲线公钥加密算法,分别用于实现数字签名密钥协商和数据加密等功能。SM2算法与RSA算法不同的是,SM2算法是基于椭圆曲线上点群离散对数难题,相对于RSA算法,256位的SM2密码强度已经比2048位的RSA密码强度要高。
SM3算法:SM3杂凑算法是我国自主设计的密码杂凑算法,适用于商用密码应用中的数字签名和验证消息认证码的生成与验证以及随机数的生成,可满足多种密码应用的安全需求。为了保证杂凑算法的安全性,其产生的杂凑值的长度不应太短,例如MD5输出128比特杂凑值,输出长度太短,影响其安全性。SHA-1算法的输出长度为160比特,SM3算法的输出长度为256比特,因此SM3算法的安全性要高于MD5算法和SHA-1算法。
SM4算法:SM4分组密码算法是我国自主设计的分组对称密码算法,用于实现数据的加密/解密运算,以保证数据和信息的机密性。要保证一个对称密码算法的安全性的基本条件是其具备足够的密钥长度,SM4算法与AES算法具有相同的密钥长度分组长度128比特,因此在安全性上高于3DES算法。

二、Java代码实现国密SM4、SM3、SM2密码算法

1. POM依赖

<dependency>
            <groupId>cn.hutool</groupId>
            <artifactId>hutool-all</artifactId>
            <version>5.7.8</version>
        </dependency>
        <dependency>
            <groupId>org.bouncycastle</groupId>
            <artifactId>bcprov-jdk15on</artifactId>
            <version>1.69</version>
        </dependency>

2.SM4算法-Java实现

3. SM3算法-Java实现

4.SM2算法-Java实现

5.SM4-另外一种实现

Sm4Util.java
import java.nio.charset.StandardCharsets;
import java.security.Key;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.SecureRandom;
import java.security.Security;
import java.util.Arrays;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.spec.SecretKeySpec;

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.pqc.math.linearalgebra.ByteUtils;
import org.apache.commons.codec.binary.Base64;


/**
 * @ClassName Sm4Util
 * @Description sm4加密算法工具类
 * @Author zhenzhai.gao
 * @Date 2023/9/5 15:00
 * @Version 1.0
 */
public class Sm4Util {

    static {
        Security.addProvider(new BouncyCastleProvider());
    }

    private static final String ENCODING = "UTF-8";
    public static final String ALGORITHM_NAME = "SM4";
    // 加密算法/分组加密模式/分组填充方式
    // PKCS5Padding-以8个字节为一组进行分组加密
    // 定义分组加密模式使用:PKCS5Padding
    public static final String ALGORITHM_NAME_ECB_PADDING7 = "SM4/ECB/PKCS5Padding";
    public static final String ALGORITHM_NAME_ECB_PADDING = "SM4/ECB/PKCS7Padding";
    // 64-16位16进制;128-32位16进制;256-64位16进制
    public static final int DEFAULT_KEY_SIZE = 128;

    /**
     * 生成ECB暗号
     *
     * @param algorithmName 算法名称
     * @param mode          模式
     * @param key
     * @return
     * @throws Exception
     * @explain ECB模式(电子密码本模式:Electronic codebook)
     */
    private static Cipher generateEcbCipher(String algorithmName, int mode, byte[] key) throws Exception {
        Cipher cipher = Cipher.getInstance(algorithmName, BouncyCastleProvider.PROVIDER_NAME);
        Key sm4Key = new SecretKeySpec(key, ALGORITHM_NAME);
        cipher.init(mode, sm4Key);
        return cipher;
    }

    // 产生密钥

    /**
     * 自动生成密钥
     *
     * @return
     * @throws NoSuchAlgorithmException
     * @throws NoSuchProviderException
     * @explain
     */
    public static byte[] generateKey() throws Exception {
        return generateKey(DEFAULT_KEY_SIZE);
    }

    /**
     * @param keySize
     * @return
     * @throws Exception
     * @explain
     */
    public static byte[] generateKey(int keySize) throws Exception {
        KeyGenerator kg = KeyGenerator.getInstance(ALGORITHM_NAME, BouncyCastleProvider.PROVIDER_NAME);
        kg.init(keySize, new SecureRandom());
        return kg.generateKey().getEncoded();
    }

    /**
     * sm4加密
     *
     * @param hexKey   16进制密钥(忽略大小写)
     * @param paramStr 待加密字符串
     * @return 返回16进制的加密字符串
     * @throws Exception
     * @explain 加密模式:ECB
     * 密文长度不固定,会随着被加密字符串长度的变化而变化
     */
    public static String encryptEcb(String hexKey, String paramStr) throws Exception {
        String cipherText = "";
        // 16进制字符串-->byte[]
        //byte[] keyData = ByteUtils.fromHexString(hexKey);
        byte[] keyData = hexKey.getBytes(ENCODING);
        // String-->byte[]
        byte[] srcData = paramStr.getBytes(ENCODING);
        // 加密后的数组
        byte[] cipherArray = encrypt_Ecb_Padding(keyData, srcData);
        // byte[]-->hexString
        //cipherText = ByteUtils.toHexString(cipherArray);
        cipherText = Base64.encodeBase64String(cipherArray);
        return cipherText;
    }

    /**
     * 加密模式之Ecb
     *
     * @param key
     * @param data
     * @return
     * @throws Exception
     * @explain
     */
    public static byte[] encrypt_Ecb_Padding(byte[] key, byte[] data) throws Exception {
        Cipher cipher = generateEcbCipher(ALGORITHM_NAME_ECB_PADDING, Cipher.ENCRYPT_MODE, key);
        return cipher.doFinal(data);
    }

    /**
     * sm4解密
     *
     * @param hexKey     16进制密钥
     * @param cipherText 16进制的加密字符串(忽略大小写)
     * @return 解密后的字符串
     * @throws Exception
     * @explain 解密模式:采用ECB
     */
    public static String decryptEcb(String hexKey, String cipherText) throws Exception {
        // 用于接收解密后的字符串
        String decryptStr = "";
        // hexString-->byte[]
        //byte[] keyData = ByteUtils.fromHexString(hexKey);
        byte[]  keyData = hexKey.getBytes(ENCODING);
        // hexString-->byte[]
        //byte[] cipherData = ByteUtils.fromHexString(cipherText);
        byte[] cipherData =Base64.decodeBase64(cipherText);
        // 解密
        byte[] srcData = decrypt_Ecb_Padding(keyData, cipherData);
        // byte[]-->String
        decryptStr = new String(srcData, ENCODING);
        return decryptStr;
    }

    /**
     * 解密
     *
     * @param key
     * @param cipherText
     * @return
     * @throws Exception
     * @explain
     */
    public static byte[] decrypt_Ecb_Padding(byte[] key, byte[] cipherText) throws Exception {
        Cipher cipher = generateEcbCipher(ALGORITHM_NAME_ECB_PADDING, Cipher.DECRYPT_MODE, key);
        return cipher.doFinal(cipherText);
    }

    /**
     * 校验加密前后的字符串是否为同一数据
     *
     * @param hexKey     16进制密钥(忽略大小写)
     * @param cipherText 16进制加密后的字符串
     * @param paramStr   加密前的字符串
     * @return 是否为同一数据
     * @throws Exception
     * @explain
     */
    public static boolean verifyEcb(String hexKey, String cipherText, String paramStr) throws Exception {
        // 用于接收校验结果
        boolean flag = false;
        // hexString-->byte[]
        //byte[] keyData = ByteUtils.fromHexString(hexKey);
        byte[] keyData = hexKey.getBytes(ENCODING);
        // 将16进制字符串转换成数组
        //byte[] cipherData = ByteUtils.fromHexString(cipherText);
        byte[] cipherData = Base64.decodeBase64(cipherText);
        // 解密
        byte[] decryptData = decrypt_Ecb_Padding(keyData, cipherData);
        // 将原字符串转换成byte[]
        byte[] srcData = paramStr.getBytes(ENCODING);
        // 判断2个数组是否一致
        flag = Arrays.equals(decryptData, srcData);
        return flag;
    }
}

Java调用:

/**
 * @ClassName SM4Test2
 * @Description TODO
 * @Author zhenzhai.gao
 * @Date 2023/9/5 15:02
 * @Version 1.0
 */
import java.security.Key;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.security.SecureRandom;
import java.security.Security;
import java.util.Arrays;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.spec.SecretKeySpec;

import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.pqc.math.linearalgebra.ByteUtils;
//import org.apache.commons.codec.binary.Hex;
//import org.apache.commons.codec.binary.Base64;

public class SM4Test2 {

    public static void main(String[] args) {
        try {

            String json = "{\"name\":\"Marydon\",\"website\":\"http://www.xxx.com/Abc20170307\"}";
            json = "1234567890abcdefghijklmnopqrstuvwxyz";
            System.out.println("国密SM4加密解密:");
            // 自定义的32位16进制密钥
            // String key = "86C63180C2806ED1F47B859DE501215B";
            String key = "1234567890123456";
            String cipher = Sm4Util.encryptEcb(key, json);
            System.out.println("国密SM4加密解密:\r\n密钥:" + key + " \n加密内容:" + json + " \n加密后v" + cipher);

            //System.out.println(cipher);
            //比对加密解密信息
            System.out.println(Sm4Util.verifyEcb(key, cipher, json));// true
            json = Sm4Util.decryptEcb(key, cipher);
            System.out.println("国密SM4加密解密:\n密钥:" + key + " \n加密内容:" + cipher + " \n解密后:" + json);

            //System.out.println(json);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

 

前言

数字签名信息加密 是前后端开发都经常需要使用到的技术,应用场景包括了用户登入、交易、信息通讯、oauth 等等,不同的应用场景也会需要使用到不同的签名加密算法,或者需要搭配不一样的 签名加密算法 来达到业务目标。这里简单的给大家介绍几种常见的签名加密算法和一些典型场景下的应用。

正文

1. 数字签名

数字签名,简单来说就是通过提供 可鉴别 的 数字信息 验证 自身身份 的一种方式。一套 数字签名 通常定义两种 互补 的运算,一个用于 签名,另一个用于 验证。分别由 发送者 持有能够 代表自己身份 的 私钥 (私钥不可泄露),由 接受者 持有与私钥对应的 公钥 ,能够在 接受 到来自发送者信息时用于 验证 其身份。

注意:图中 加密过程 有别于 公钥加密,更多 介绍戳这里签名 最根本的用途是要能够唯一 证明发送方的身份,防止 中间人攻击CSRF 跨域身份伪造。基于这一点在诸如 设备认证用户认证第三方认证 等认证体系中都会使用到 签名算法 (彼此的实现方式可能会有差异)。

2. 加密和解密

2.1. 加密

数据加密 的基本过程,就是对原来为 明文 的文件或数据按 某种算法 进行处理,使其成为 不可读 的一段代码,通常称为 “密文”。通过这样的途径,来达到 保护数据 不被 非法人窃取、阅读的目的。

2.2. 解密

加密 的 逆过程 为 解密,即将该 编码信息 转化为其 原来数据 的过程。

3. 对称加密和非对称加密

加密算法分 对称加密 和 非对称加密,其中对称加密算法的加密与解密 密钥相同,非对称加密算法的加密密钥与解密 密钥不同,此外,还有一类 不需要密钥 的 散列算法

常见的 对称加密 算法主要有 DES3DESAES 等,常见的 非对称算法 主要有 RSADSA 等,散列算法 主要有 SHA-1MD5 等。

3.1. 对称加密

对称加密算法 是应用较早的加密算法,又称为 共享密钥加密算法。在 对称加密算法 中,使用的密钥只有一个,发送 和 接收 双方都使用这个密钥对数据进行 加密 和 解密。这就要求加密和解密方事先都必须知道加密的密钥。

  1. 数据加密过程:在对称加密算法中,数据发送方 将 明文 (原始数据) 和 加密密钥 一起经过特殊 加密处理,生成复杂的 加密密文 进行发送。

  2. 数据解密过程:数据接收方 收到密文后,若想读取原数据,则需要使用 加密使用的密钥 及相同算法的 逆算法 对加密的密文进行解密,才能使其恢复成 可读明文

3.2. 非对称加密

非对称加密算法,又称为 公开密钥加密算法。它需要两个密钥,一个称为 公开密钥 (public key),即 公钥,另一个称为 私有密钥 (private key),即 私钥

因为 加密 和 解密 使用的是两个不同的密钥,所以这种算法称为 非对称加密算法

  1. 如果使用 公钥 对数据 进行加密,只有用对应的 私钥 才能 进行解密

  2. 如果使用 私钥 对数据 进行加密,只有用对应的 公钥 才能 进行解密

例子:甲方生成 一对密钥 并将其中的一把作为 公钥 向其它人公开,得到该公钥的 乙方 使用该密钥对机密信息 进行加密 后再发送给甲方,甲方再使用自己保存的另一把 专用密钥 (私钥),对 加密 后的信息 进行解密

4. 常见的签名加密算法

4.1. MD5算法

MD5 用的是 哈希函数,它的典型应用是对一段信息产生 信息摘要,以 防止被篡改。严格来说,MD5 不是一种 加密算法 而是 摘要算法。无论是多长的输入,MD5 都会输出长度为 128bits 的一个串 (通常用 16 进制 表示为 32 个字符)。

public static final byte[] computeMD5(byte[] content) {
    try {
        MessageDigest md5 = MessageDigest.getInstance("MD5");
        return md5.digest(content);
    } catch (NoSuchAlgorithmException e) {
        throw new RuntimeException(e);
    }
}

4.2. SHA1算法

SHA1 是和 MD5 一样流行的 消息摘要算法,然而 SHA1 比 MD5 的 安全性更强。对于长度小于 2 ^ 64 位的消息,SHA1 会产生一个 160 位的 消息摘要。基于 MD5SHA1 的信息摘要特性以及 不可逆 (一般而言),可以被应用在检查 文件完整性 以及 数字签名 等场景。

public static byte[] computeSHA1(byte[] content) {
    try {
        MessageDigest sha1 = MessageDigest.getInstance("SHA1");
        return sha1.digest(content);
    } catch (NoSuchAlgorithmException e) {
        throw new RuntimeException(e);
    }
}

4.3. HMAC算法

HMAC 是密钥相关的 哈希运算消息认证码(Hash-based Message Authentication Code),HMAC 运算利用 哈希算法 (MD5SHA1 等),以 一个密钥 和 一个消息 为输入,生成一个 消息摘要 作为 输出

HMAC 发送方 和 接收方 都有的 key 进行计算,而没有这把 key 的第三方,则是 无法计算 出正确的 散列值的,这样就可以 防止数据被篡改

package net.pocrd.util;
import net.pocrd.annotation.NotThreadSafe;
import net.pocrd.define.ConstField;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.crypto.Mac;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;
import java.util.Arrays;


@NotThreadSafe
public class HMacHelper {
    private static final Logger logger = LoggerFactory.getLogger(HMacHelper.class);
    private Mac mac;

    /**
     * MAC算法可选以下多种算法
     * HmacMD5/HmacSHA1/HmacSHA256/HmacSHA384/HmacSHA512
     */
    private static final String KEY_MAC = "HmacMD5";
    public HMacHelper(String key) {
        try {
            SecretKey secretKey = new SecretKeySpec(key.getBytes(ConstField.UTF8), KEY_MAC);
            mac = Mac.getInstance(secretKey.getAlgorithm());
            mac.init(secretKey);
        } catch (Exception e) {
            logger.error("create hmac helper failed.", e);
        }
    }
    public byte[] sign(byte[] content) {
        return mac.doFinal(content);
    }

    public boolean verify(byte[] signature, byte[] content) {
        try {
            byte[] result = mac.doFinal(content);
            return Arrays.equals(signature, result);
        } catch (Exception e) {
            logger.error("verify sig failed.", e);
        }
        return false;
    }
}

测试结论HMAC 算法实例在 多线程环境 下是 不安全的。但是需要在 多线程访问 时,进行同步的辅助类,使用 ThreadLocal 为 每个线程缓存 一个实例可以避免进行锁操作。

4.4. AES/DES/3DES算法

AESDES3DES 都是 对称 的 块加密算法加解密 的过程是 可逆的。常用的有 AES128AES192AES256 (默认安装的 JDK 尚不支持 AES256,需要安装对应的 jce 补丁进行升级 jce1.7jce1.8)。

4.4.1. DES算法

DES 加密算法是一种 分组密码,以 64 位为 分组对数据 加密,它的 密钥长度 是 56 位,加密解密 用 同一算法

DES 加密算法是对 密钥 进行保密,而 公开算法,包括加密和解密算法。这样,只有掌握了和发送方 相同密钥 的人才能解读由 DES加密算法加密的密文数据。因此,破译 DES 加密算法实际上就是 搜索密钥的编码。对于 56 位长度的 密钥 来说,如果用 穷举法 来进行搜索的话,其运算次数为 2 ^ 56 次。

4.4.2. 3DES算法

是基于 DES 的 对称算法,对 一块数据 用 三个不同的密钥 进行 三次加密强度更高

4.4.3. AES算法

AES 加密算法是密码学中的 高级加密标准,该加密算法采用 对称分组密码体制,密钥长度的最少支持为 128 位、 192 位、256 位,分组长度 128 位,算法应易于各种硬件和软件实现。这种加密算法是美国联邦政府采用的 区块加密标准

AES 本身就是为了取代 DES 的,AES 具有更好的 安全性效率 和 灵活性

import net.pocrd.annotation.NotThreadSafe;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.security.SecureRandom;

@NotThreadSafe
public class AesHelper {
    private SecretKeySpec keySpec;
    private IvParameterSpec iv;

    public AesHelper(byte[] aesKey, byte[] iv) {
        if (aesKey == null || aesKey.length < 16 || (iv != null && iv.length < 16)) {
            throw new RuntimeException("错误的初始密钥");
        }
        if (iv == null) {
            iv = Md5Util.compute(aesKey);
        }
        keySpec = new SecretKeySpec(aesKey, "AES");
        this.iv = new IvParameterSpec(iv);
    }

    public AesHelper(byte[] aesKey) {
        if (aesKey == null || aesKey.length < 16) {
            throw new RuntimeException("错误的初始密钥");
        }
        keySpec = new SecretKeySpec(aesKey, "AES");
        this.iv = new IvParameterSpec(Md5Util.compute(aesKey));
    }

    public byte[] encrypt(byte[] data) {
        byte[] result = null;
        Cipher cipher = null;
        try {
            cipher = Cipher.getInstance("AES/CFB/NoPadding");
            cipher.init(Cipher.ENCRYPT_MODE, keySpec, iv);
            result = cipher.doFinal(data);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        return result;
    }

    public byte[] decrypt(byte[] secret) {
        byte[] result = null;
        Cipher cipher = null;
        try {
            cipher = Cipher.getInstance("AES/CFB/NoPadding");
            cipher.init(Cipher.DECRYPT_MODE, keySpec, iv);
            result = cipher.doFinal(secret);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        return result;
    }

    public static byte[] randomKey(int size) {
        byte[] result = null;
        try {
            KeyGenerator gen = KeyGenerator.getInstance("AES");
            gen.init(size, new SecureRandom());
            result = gen.generateKey().getEncoded();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        return result;
    }
}

4.5. RSA算法

RSA 加密算法是目前最有影响力的 公钥加密算法,并且被普遍认为是目前 最优秀的公钥方案 之一。RSA 是第一个能同时用于 加密 和 数字签名 的算法,它能够 抵抗 到目前为止已知的 所有密码攻击,已被 ISO 推荐为公钥数据加密标准。

RSA 加密算法 基于一个十分简单的数论事实:将两个大 素数 相乘十分容易,但想要对其乘积进行 因式分解 却极其困难,因此可以将 乘积 公开作为 加密密钥

import net.pocrd.annotation.NotThreadSafe;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.crypto.Cipher;
import java.io.ByteArrayOutputStream;
import java.security.KeyFactory;
import java.security.Security;
import java.security.Signature;
import java.security.interfaces.RSAPrivateCrtKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;

@NotThreadSafe
public class RsaHelper {
    private static final Logger logger = LoggerFactory.getLogger(RsaHelper.class);
    private RSAPublicKey publicKey;
    private RSAPrivateCrtKey privateKey;

    static {
        Security.addProvider(new BouncyCastleProvider()); //使用bouncycastle作为加密算法实现
    }

    public RsaHelper(String publicKey, String privateKey) {
        this(Base64Util.decode(publicKey), Base64Util.decode(privateKey));
    }

    public RsaHelper(byte[] publicKey, byte[] privateKey) {
        try {
            KeyFactory keyFactory = KeyFactory.getInstance("RSA");
            if (publicKey != null && publicKey.length > 0) {
                this.publicKey = (RSAPublicKey)keyFactory.generatePublic(new X509EncodedKeySpec(publicKey));
            }
            if (privateKey != null && privateKey.length > 0) {
                this.privateKey = (RSAPrivateCrtKey)keyFactory.generatePrivate(new PKCS8EncodedKeySpec(privateKey));
            }
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    public RsaHelper(String publicKey) {
        this(Base64Util.decode(publicKey));
    }

    public RsaHelper(byte[] publicKey) {
        try {
            KeyFactory keyFactory = KeyFactory.getInstance("RSA");
            if (publicKey != null && publicKey.length > 0) {
                this.publicKey = (RSAPublicKey)keyFactory.generatePublic(new X509EncodedKeySpec(publicKey));
            }
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    public byte[] encrypt(byte[] content) {
        if (publicKey == null) {
            throw new RuntimeException("public key is null.");
        }

        if (content == null) {
            return null;
        }

        try {
            Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
            cipher.init(Cipher.ENCRYPT_MODE, publicKey);
            int size = publicKey.getModulus().bitLength() / 8 - 11;
            ByteArrayOutputStream baos = new ByteArrayOutputStream((content.length + size - 1) / size * (size + 11));
            int left = 0;
            for (int i = 0; i < content.length; ) {
                left = content.length - i;
                if (left > size) {
                    cipher.update(content, i, size);
                    i += size;
                } else {
                    cipher.update(content, i, left);
                    i += left;
                }
                baos.write(cipher.doFinal());
            }
            return baos.toByteArray();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    public byte[] decrypt(byte[] secret) {
        if (privateKey == null) {
            throw new RuntimeException("private key is null.");
        }

        if (secret == null) {
            return null;
        }

        try {
            Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding");
            cipher.init(Cipher.DECRYPT_MODE, privateKey);
            int size = privateKey.getModulus().bitLength() / 8;
            ByteArrayOutputStream baos = new ByteArrayOutputStream((secret.length + size - 12) / (size - 11) * size);
            int left = 0;
            for (int i = 0; i < secret.length; ) {
                left = secret.length - i;
                if (left > size) {
                    cipher.update(secret, i, size);
                    i += size;
                } else {
                    cipher.update(secret, i, left);
                    i += left;
                }
                baos.write(cipher.doFinal());
            }
            return baos.toByteArray();
        } catch (Exception e) {
            logger.error("rsa decrypt failed.", e);
        }
        return null;
    }

    public byte[] sign(byte[] content) {
        if (privateKey == null) {
            throw new RuntimeException("private key is null.");
        }
        if (content == null) {
            return null;
        }
        try {
            Signature signature = Signature.getInstance("SHA1WithRSA");
            signature.initSign(privateKey);
            signature.update(content);
            return signature.sign();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    public boolean verify(byte[] sign, byte[] content) {
        if (publicKey == null) {
            throw new RuntimeException("public key is null.");
        }
        if (sign == null || content == null) {
            return false;
        }
        try {
            Signature signature = Signature.getInstance("SHA1WithRSA");
            signature.initVerify(publicKey);
            signature.update(content);
            return signature.verify(sign);
        } catch (Exception e) {
            logger.error("rsa verify failed.", e);
        }
        return false;
    }
}

4.6. ECC算法

ECC 也是一种 非对称加密算法,主要优势是在某些情况下,它比其他的方法使用 更小的密钥,比如 RSA 加密算法,提供 相当的或更高等级 的安全级别。不过一个缺点是 加密和解密操作 的实现比其他机制 时间长 (相比 RSA 算法,该算法对 CPU 消耗严重)。

import net.pocrd.annotation.NotThreadSafe;
import org.bouncycastle.jcajce.provider.asymmetric.ec.BCECPrivateKey;
import org.bouncycastle.jcajce.provider.asymmetric.ec.BCECPublicKey;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.crypto.Cipher;
import java.io.ByteArrayOutputStream;
import java.security.KeyFactory;
import java.security.Security;
import java.security.Signature;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;

@NotThreadSafe
public class EccHelper {
    private static final Logger logger = LoggerFactory.getLogger(EccHelper.class);
    private static final int SIZE = 4096;
    private BCECPublicKey  publicKey;
    private BCECPrivateKey privateKey;

    static {
        Security.addProvider(new BouncyCastleProvider());
    }

    public EccHelper(String publicKey, String privateKey) {
        this(Base64Util.decode(publicKey), Base64Util.decode(privateKey));
    }

    public EccHelper(byte[] publicKey, byte[] privateKey) {
        try {
            KeyFactory keyFactory = KeyFactory.getInstance("EC", "BC");
            if (publicKey != null && publicKey.length > 0) {
                this.publicKey = (BCECPublicKey)keyFactory.generatePublic(new X509EncodedKeySpec(publicKey));
            }
            if (privateKey != null && privateKey.length > 0) {
                this.privateKey = (BCECPrivateKey)keyFactory.generatePrivate(new PKCS8EncodedKeySpec(privateKey));
            }
        } catch (ClassCastException e) {
            throw new RuntimeException("", e);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    public EccHelper(String publicKey) {
        this(Base64Util.decode(publicKey));
    }

    public EccHelper(byte[] publicKey) {
        try {
            KeyFactory keyFactory = KeyFactory.getInstance("EC", "BC");
            if (publicKey != null && publicKey.length > 0) {
                this.publicKey = (BCECPublicKey)keyFactory.generatePublic(new X509EncodedKeySpec(publicKey));
            }
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    public byte[] encrypt(byte[] content) {
        if (publicKey == null) {
            throw new RuntimeException("public key is null.");
        }
        try {
            Cipher cipher = Cipher.getInstance("ECIES", "BC");
            cipher.init(Cipher.ENCRYPT_MODE, publicKey);
            int size = SIZE;
            ByteArrayOutputStream baos = new ByteArrayOutputStream((content.length + size - 1) / size * (size + 45));
            int left = 0;
            for (int i = 0; i < content.length; ) {
                left = content.length - i;
                if (left > size) {
                    cipher.update(content, i, size);
                    i += size;
                } else {
                    cipher.update(content, i, left);
                    i += left;
                }
                baos.write(cipher.doFinal());
            }
            return baos.toByteArray();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    public byte[] decrypt(byte[] secret) {
        if (privateKey == null) {
            throw new RuntimeException("private key is null.");
        }
        try {
            Cipher cipher = Cipher.getInstance("ECIES", "BC");
            cipher.init(Cipher.DECRYPT_MODE, privateKey);
            int size = SIZE + 45;
            ByteArrayOutputStream baos = new ByteArrayOutputStream((secret.length + size + 44) / (size + 45) * size);
            int left = 0;
            for (int i = 0; i < secret.length; ) {
                left = secret.length - i;
                if (left > size) {
                    cipher.update(secret, i, size);
                    i += size;
                } else {
                    cipher.update(secret, i, left);
                    i += left;
                }
                baos.write(cipher.doFinal());
            }
            return baos.toByteArray();
        } catch (Exception e) {
            logger.error("ecc decrypt failed.", e);
        }
        return null;
    }

    public byte[] sign(byte[] content) {
        if (privateKey == null) {
            throw new RuntimeException("private key is null.");
        }
        try {
            Signature signature = Signature.getInstance("SHA1withECDSA", "BC");
            signature.initSign(privateKey);
            signature.update(content);
            return signature.sign();
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    public boolean verify(byte[] sign, byte[] content) {
        if (publicKey == null) {
            throw new RuntimeException("public key is null.");
        }
        try {
            Signature signature = Signature.getInstance("SHA1withECDSA", "BC");
            signature.initVerify(publicKey);
            signature.update(content);
            return signature.verify(sign);
        } catch (Exception e) {
            logger.error("ecc verify failed.", e);
        }
        return false;
    }
}

5. 各种加密算法对比

5.1. 散列算法比较

名称 安全性 速度
SHA-1
MD5

5.2. 对称加密算法比较

名称 密钥名称 运行速度 安全性 资源消耗
DES 56位 较快
3DES 112位或168位
AES 128、192、256位

5.3. 非对称加密算法比较

名称 成熟度 安全性 运算速度 资源消耗
RSA
ECC

5.4. 对称算法与非对称加密算法

5.4.1. 对称算法
  1. 密钥管理:比较难,不适合互联网,一般用于内部系统

  2. 安全性:中

  3. 加密速度:快好 几个数量级 (软件加解密速度至少快 100 倍,每秒可以加解密数 M 比特 数据),适合大数据量的加解密处理

5.4.2. 非对称算法
  1. 密钥管理:密钥容易管理

  2. 安全性:高

  3. 加密速度:比较慢,适合 小数据量 加解密或数据签名

小结

本文介绍了 数字签名加密和解密对称加密和非对称加密,然后详细介绍了 MD5SHA-1HMACDES/AESRSA 和 ECC 这几种加密算法和代码示例。

浅谈常见的七种加密算法及实现-CSDN博客

 

posted @ 2024-02-20 16:39  CharyGao  阅读(688)  评论(0编辑  收藏  举报