$n^2$ 求 $\ln$
\[\texttt{Given }F,\ G=\ln F\\
\exp G=F\\
(\exp G)'=F'\\
G'F=F'\\
[x^k]G'F=[x^k]F'\\
\sum_{i=0}^k(i+1)g_{i+1}f_{k-i}=(k+1)f_{k+1}\\
(k+1)g_{k+1}f_0=(k+1)f_{k+1}-\sum_{i=0}^{k-1}(i+1)g_{i+1}f_{k-i}\\
g_{k+1}=f_{k+1}-{1\over k+1}\sum_{i=0}^{k-1}(i+1)g_{i+1}f_{k-i}
\]