经典问题 1 —— DAG 上区间限制拓扑序

问题描述

给定一个 DAG,求一个拓扑序,使得节点 \(i\) 的拓扑序 \(\in [l_i,r_i]\)

题解

首先进行一个预处理:对于所有 \(u\),令 \(\forall (v,u)\in E, l_u\leftarrow \max(l_u,l_v+1),\forall (u,v)\in E, r_u\leftarrow \min(r_u,r_v-1)\)

也就是 \(l_u\) 对任何可能的拓扑序的最小值取 \(\max\)\(r_u\) 同理。若此时有节点 \(l_u>r_u\) 则无解。

将所有区间按 \(r\) 端点排序,然后以 \(l\) 端点为关键字插入大根堆中。从大到小依次考虑拓扑序 \(i\) 应为哪个节点,将所有 \(r_u\ge i\) 的节点插入堆中,然后取出 \(l_u\) 最大的,若 \(l_u>i\) 则显然无解,否则直接令 \(topo_i=u\),弹堆。由贪心交换性质应该可以证明这是可能的最优情况,如果这样都无解那么一定无解。至于正确性,我们发现如果当前存在 \(j>i\) 使得 \((topo_j,topo_i)\in E\),则会有 \(l_{topo[i]}>l_{topo[j]}\),与每次取出 \(l\) 最大的区间矛盾。

posted @ 2023-01-26 10:14  CharlieVinnie  阅读(57)  评论(0编辑  收藏  举报