x = x.view(x.size(0), -1) & x = x.view(-1, num_flat_feature) 的理解
部分转自于: https://blog.csdn.net/whut_ldz/article/details/78882532
之前对于pytorch的网络编程学习都是大致理解每一层的概念,有些语法语句没有从原理上弄清楚,就比如标题的x = x.view(x.size(0), -1) 。
这句话一般出现在model类的forward函数中,具体位置一般都是在调用分类器之前。分类器是一个简单的nn.Linear()结构,输入输出都是维度为一的值,x = x.view(x.size(0), -1) 这句话的出现就是为了将前面多维度的tensor展平成一维。下面是个简单的例子,我将会根据例子来对该语句进行解析。
class NET(nn.Module): def __init__(self,batch_size): super(NET,self).__init__() self.conv = nn.Conv2d(outchannels=3,in_channels=64,kernel_size=3,stride=1) self.fc = nn.Linear(64*batch_size,10) def forward(self,x): x = self.conv(x) x = x.view(x.size(0), -1) out = self.fc(x)
上面是个简单的网络结构,包含一个卷积层和一个分类层。forward()函数中,input首先经过卷积层,此时的输出x是包含batchsize维度为4的tensor,即(batchsize,channels,x,y),x.size(0)指batchsize的值。x = x.view(x.size(0), -1)简化x = x.view(batchsize, -1)。
view()函数的功能根reshape类似,用来转换size大小。x = x.view(batchsize, -1)中batchsize指转换后有几行,而-1指在不告诉函数有多少列的情况下,根据原tensor数据和batchsize自动分配列数。
同样,
对于 pytorch 官网例子中:
def forward(self, x): # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # If the size is a square you can only specify a single number x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features
其中x = x.view(-1, num_flat_features) ,num_flat_features是计算了特征的维数,在指定特征的维数后,分配行数,即batch_size.