Thinkbayes_Chapter6

第六章——决策分析


问题

假设有一个比赛,两名参赛选手A、B需各自猜测一组展品的总价格,比赛规则如下:

  1. 选手报价必须低于商品价格,或者视为失败
  2. 猜测价格越接近商品实际价格的选手获胜,并且可获得报价商品
  3. 如果获胜者报价误差低于250美元,那么可以额外获得对手的报价商品

以贝叶斯思维思考,这一问题可以分解为以下几个部分:

  1. 在看到商品前,选手对于展示品的价格的先验判断
  2. 看到商品后,选手如何更新先验预期
  3. 基于更新的后验判断,选手应该怎么出价利益最大化

模型思路

根据往届比赛的数据,可以得到展品价格的概率密度分布,即先验P(H)。

两组showcase的先验分布

将实际价格与猜测值的差异error作为资料D,定义为error=price-guess,得到的pdf分布,即标准化常量P(D)。

将选手视为误差特性已知(或者稳定)的价格猜测模型,这是模型可用的先决。由于误差特性已知或稳定,我们可以假设选手猜测价格的误差价与实际报价的误差价的方差相同,则当给定一组price和guess时,likelihood可由先前计算出来的error PDF得到。

Likelihood=P(D∣H)=P(Error∣Price)=PDF_error(diffs)

可由以上信息得到guess的后验修正值。例题中假设先验猜测值为20000,则后验猜测值是24000。

先验分布与后验分布的比较

虽然我们可以得知修正后的后验分布,但是由于受到游戏规则的影响,后验值不一定是最优报价。所以我们通过计算Expected_return即预期收益来得到最优报价。如下图选手的后验值与最优报价是不一样的,在本游戏中,通常最优报价要比后验值低。

最优报价

该模型的缺点在于模型的先决。因为实际比赛中选手会根据对手的出价改变自己的出价策略,即此时模型的误差特性已经不是稳定的了。


PDF和KDE

PDF即probility density functions,是一个连续数值的概率分布函数。

KDE即Kernel density estimation,是一个从离散数据中建立PDF分布的算法。


参考

[http://blog.yeshuanova.com/post/2018/07/thinkbayes-ch6/](XENO UNIVERSE :ThinkBayes 心得筆記 - Chapter 6)

posted @ 2018-09-06 18:17  Wunsam_Chan  阅读(142)  评论(0编辑  收藏  举报