Solution -「ABC 217」题解
D - Cutting Woods
记录每一个切割点,每次求前驱后驱就好了,注意简单判断一下开闭区间。
考场上采用的 FHQ_Treap
无脑莽。
#include <cstdio>
#include <cstdlib>
using namespace std;
typedef long long LL;
LL Max(LL x, LL y) { return x > y ? x : y; }
LL Min(LL x, LL y) { return x < y ? x : y; }
LL Abs(LL x) { return x < 0 ? -x : x; }
int read() {
int k = 1, x = 0;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * k;
}
LL read_LL() {
int k = 1;
LL x = 0;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * k;
}
void write(LL x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
void print(LL x, char s) {
write(x);
putchar(s);
}
// Fhq-Treap
const int MAXN = 2e5 + 5;
struct Fhq_Treap {
struct Fhq_Node {
int l, r, val, key, size;
#define lson tr[p].l
#define rson tr[p].r
Fhq_Node() {}
Fhq_Node(int L, int R, int Val, int Key, int Size) {
l = L;
r = R;
val = Val;
key = Key;
size = Size;
}
} tr[MAXN];
int tot, root;
Fhq_Treap() {
tot = 0, root = 0;
}
int Get(int val) {
tr[++tot] = Fhq_Node(0, 0, val, rand(), 1);
return tot;
}
void Push_Up(int p) { tr[p].size = tr[lson].size + tr[rson].size + 1; }
void Split(int p, int val, int &x, int &y) {
if (!p) {
x = 0, y = 0;
return;
}
if (tr[p].val <= val) {
x = p;
Split(rson, val, rson, y);
} else {
y = p;
Split(lson, val, x, lson);
}
Push_Up(p);
}
int Merge(int x, int y) {
if (!x || !y)
return x + y;
if (tr[x].key <= tr[y].key) {
tr[x].r = Merge(tr[x].r, y);
Push_Up(x);
return x;
} else {
tr[y].l = Merge(x, tr[y].l);
Push_Up(y);
return y;
}
}
void Insert(int val) {
int x, y;
Split(root, val, x, y);
root = Merge(Merge(x, Get(val)), y);
}
void Delete(int val) {
int x, y, z;
Split(root, val, x, z);
Split(x, val - 1, x, y);
y = Merge(tr[y].l, tr[y].r);
root = Merge(Merge(x, y), z);
}
int Get_Rank(int val) {
int x, y, ret;
Split(root, val - 1, x, y);
ret = tr[x].size + 1;
root = Merge(x, y);
return ret;
}
int Get_Val(int Rank) {
int p = root;
while (p) {
if (tr[lson].size + 1 == Rank)
return tr[p].val;
else if (Rank <= tr[lson].size)
p = lson;
else {
Rank -= (tr[lson].size + 1);
p = rson;
}
}
return 0;
}
int Get_Pre(int val) {
int x, y, p;
Split(root, val - 1, x, y);
p = x;
while (rson) p = rson;
int ret = tr[p].val;
root = Merge(x, y);
return ret;
}
int Get_Next(int val) {
int x, y, p;
Split(root, val, x, y);
p = y;
while (lson) p = lson;
int ret = tr[p].val;
root = Merge(x, y);
return ret;
}
#undef lson
#undef rson
} tree;
int main() {
int l = read(), q = read();
tree.Insert(0);
tree.Insert(l);
for(int i = 1, opt, x; i <= q; i++) {
opt = read(), x = read();
if(opt == 1)
tree.Insert(x);
else
print(tree.Get_Next(x) - tree.Get_Pre(x), '\n');
}
return 0;
}
E - Sorting Queries
将所有的插入操作先存进一个临时序列。
在遇到排序操作时再处理这些序列里的元素。
具体来说就是直接丢进优先队列。也可以学我赛时直接 copy D 的 code 来改。
#include <queue>
#include <cstdio>
using namespace std;
typedef long long LL;
LL Max(LL x, LL y) { return x > y ? x : y; }
LL Min(LL x, LL y) { return x < y ? x : y; }
LL Abs(LL x) { return x < 0 ? -x : x; }
int read() {
int k = 1, x = 0;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * k;
}
LL read_LL() {
int k = 1;
LL x = 0;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * k;
}
void write(LL x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
void print(LL x, char s) {
write(x);
putchar(s);
}
const int MAXN = 2e5 + 5;
int num[MAXN], len = 0, tot = 1;
priority_queue<int, vector<int>, greater<int> > q;
int main() {
int n = read();
for(int i = 1, opt; i <= n; i++) {
opt = read();
if(opt == 1) {
int x = read();
num[++len] = x;
}
else if(opt == 2) {
if(!q.empty()) {
print(q.top(), '\n');
q.pop();
}
else {
print(num[tot], '\n');
tot++;
}
}
else {
for(int i = tot; i <= len; i++)
q.push(num[i]);
tot = 1, len = 0;
}
}
return 0;
}
F - Make Pair
小清新的区间 dp
题。
相邻删除这样的操作就应该往区间 dp
上去想。
定义 \(f(i, j)\) 表示将区间 \([i, j]\) 匹配完的方案数,显然需要满足 \(2 \mid r - l + 1\)。
可得:
其中 \(k\) 同学和 \(i\) 同学关系友好,且对于任意 \(i\),若 \(0 \leq i \leq n\),有 \(f(i, i + 1) = 1\)。
其中组合数可以理解为我们共有 \(\frac {j - i + 1} {2}\) 个盒子(盒子间被认为是不同的),且我们有 \(\frac {k - i - 1} {2}\) 个 \(a\) 球,\(1\) 个 \(b\) 球,和 \(\frac {j - k} {2}\) 个 \(c\) 球(同种类的球被认为是相同的,这是因为在上面的转移柿子中我们已经考虑了球种类内部的情况),且 \(b\) 球放入的盒子编号必须大于任意一个 \(a\) 球放入的盒子编号。
感性理解一下其实就是我们在所有的盒子中选 \(\frac {j - k} {2}\) 个出来放 \(c\) 球。
时间复杂度 \(O(n^3)\)。
#include <cstdio>
typedef long long LL;
int Max(int x, int y) { return x > y ? x : y; }
int Min(int x, int y) { return x < y ? x : y; }
int Abs(int x) { return x < 0 ? -x : x; }
int read() {
int x = 0, k = 1;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while ('0' <= s && s <= '9') {
x = (x << 3) + (x << 1) + (s - '0');
s = getchar();
}
return x * k;
}
void write(LL x) {
if (x < 0) {
x = -x;
putchar('-');
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
void print(LL x, char s) {
write(x);
putchar(s);
}
const int MAXN = 4e2 + 5;
const int mod = 998244353;
bool w[MAXN][MAXN];
LL q[MAXN], sq[MAXN], dp[MAXN][MAXN];
LL A (int x, int y) { return q[x] * sq[x - y] % mod;}
LL C (int x, int y) { return A(x, y) * sq[y] % mod;}
LL Quick_Pow(LL a, LL b) {
LL res = 1;
while(b) {
if(b & 1)
res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res % mod;
}
int main() {
int n = read(), m = read();
q[0] = 1, sq[0] = 1;
for(int i = 1; i <= (n << 1); i++) {
q[i] = q[i - 1] * i % mod;
sq[i] = Quick_Pow(q[i], mod - 2);
}
for(int i = 1, a, b; i <= m; i++) {
a = read(), b = read();
w[a][b] = w[b][a] = true;
}
for(int i = 1; i <= (n << 1) + 1; i++)
dp[i][i - 1] = 1;
for(int len = 2; len <= (n << 1); len += 2)
for(int l = 1; l + len - 1 <= (n << 1); l++) {
int r = l + len - 1;
for(int k = l + 1; k <= r; k += 2)
if(w[l][k])
dp[l][r] = (dp[l][r] + dp[l + 1][k - 1] * dp[k + 1][r] % mod * C(len / 2, (r - k + 1) / 2) % mod) % mod;
}
print(dp[1][n << 1], '\n');
return 0;
}
G - Groups
还是一道 dp
呢。
我们定义 \(f(i, j)\) 表示分完前 \(i\) 个数且当前分了 \(j\) 个组。
考虑当前数的两种决策。
第一种,新开一个组,即方案数为 \(f(i - 1, j - 1)\)。
第二种,不开新的组而是丢进已存在的组,不难发现当前数可以丢入的组共有 \(j - t(i, i \bmod m)\) 个,其中 \(t(x, y) = \sum_{i = 1}^{x} [i \bmod m = y]\)。
故可得,\(f(i, j) = f(i - 1, j - 1) + f(i - 1, j) \times (j - t(i, i \bmod m))\)。
初始状态为 \(f(0, 0) = 1\)。其他的比如 \(t(x, y)\) 的转移啦、答案状态啦就很简单了嘛,时间复杂度 \(O(n^2)\)。
#include <cstdio>
typedef long long LL;
LL Max(LL x, LL y) { return x > y ? x : y; }
LL Min(LL x, LL y) { return x < y ? x : y; }
LL Abs(LL x) { return x < 0 ? -x : x; }
int read() {
int k = 1, x = 0;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * k;
}
LL read_LL() {
int k = 1;
LL x = 0;
char s = getchar();
while (s < '0' || s > '9') {
if (s == '-')
k = -1;
s = getchar();
}
while (s >= '0' && s <= '9') {
x = (x << 3) + (x << 1) + s - '0';
s = getchar();
}
return x * k;
}
void write(LL x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9)
write(x / 10);
putchar(x % 10 + '0');
}
void print(LL x, char s) {
write(x);
putchar(s);
}
const int MAXN = 5e3 + 5;
const int mod = 998244353;
int t[MAXN];
LL dp[MAXN][MAXN];
int main() {
int n = read(), m = read();
dp[0][0] = 1;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++)
dp[i][j] = (dp[i - 1][j - 1] + dp[i - 1][j] * ((j - t[i % m] + mod) % mod) % mod) % mod;
t[i % m]++;
}
for(int i = 1; i <= n; i++)
print(dp[n][i], '\n');
return 0;
}
H - Snuketoon
不会了不会了不会了 /fad。