数论 初步

0x01 整除

概念:\(a, b \in \mathbb Z\)\(a \neq 0\),如果 \(\exists q \in \mathbb Z\),使得 \(a \times q = b\),则 \(b\) 能被 \(a\) 整除,记为 \(a \mid b\)


性质:

1. 传递性:如果 \(a \mid b\)\(b \mid c\),则 \(a \mid c\)

2.\(a \mid b\)\(a \mid c\) 则对于 \(\forall a, b \in \mathbb Z\),有 \(a \mid (bx+cy)\)

3.\(m\) 不为 \(0\),则 \(a \mid b\) 等价于 \(ma \mid mb\)

4.\(x,y \in \mathbb Z\) 满足下式:\(ax+by=1\),且 \(a \mid n\)\(b \mid n\),那么 \(ab \mid n\)

5.\(\exists b, q, d, c \in \mathbb Z\)\(b = q \times d + c\),那么 \(d \mid b\)\(d \mid c\) 可以互推。


证明:

1.\(b = ak_a(k_a \in \mathbb Z)\),且 \(c = bk_b(k_b \in \mathbb Z)\)

则有 \(c = (ak_a)k_b\)

\(c = k_ak_ba\)

其中 \(k_a, k_b \in \mathbb Z\)

\(∴ a \mid c\)


2.\(b = ak_b(k_b \in \mathbb Z)\),且 \(c = ak_c(k_c \in \mathbb Z)\)

\(∴ bx + cy = (ak_b)x + (ak_c)y\)

\(bx + cy = a(k_bx + k_cy)\)

其中 \(k_b, k_c, x, y \in \mathbb Z\)

\(∴ (k_bx + k_cy) \in \mathbb Z\)

\(a \mid (bx+cy)\)


3.\(b = ak_b(k_b \in \mathbb Z)\)

\(∴ mb = mak_b (k_b \in \mathbb Z)\)

\(m \in \mathbb Z, m \neq 0\)

\(∴ ma \mid mb\)


4. \(∵ ax + by = 1\)

\(∴ \frac x b + \frac y a = \frac 1 {ab}\)

\(∴ \frac n {ab} = \frac {xn} b + \frac {ny} a\)

又由题: \(ak_a = n, bk_b = n(k_a, k_b \in \mathbb Z)\)

\(∴ \frac n {ab} = k_ay + k_bx\)

\(n = ab(k_ay + k_bx)\)

\(∵ k_a, k_b, x, y \in \mathbb Z\)

\(∴ ab \mid n\)


5.1

\(b = d * k_b(k_b \in \mathbb Z)\)

\(∴ dk_b = qd + c\)

\(d(k_b - q) = c\)

\(∵ k_b, q \in \mathbb Z\)

\(∴ (k_b - q) \in \mathbb Z\)

\(d \mid c\)


5.2\(c = d * k_c(k_c \in \mathbb Z)\)

\(∴ b = qd + qk_c\)

\(d(k_c + q) = b\)

\(∵ k_c, q \in \mathbb Z\)

\(∴ (k_c + q) \in \mathbb Z\)

\(d \mid b\)


0x02 mod

概念: 对于\(a,b \in \mathbb Z, b \neq 0\),求 \(a\) 除以 \(b\) 的余数,称为 \(a\)\(b\),记为 \(a \bmod b\)


性质: 暂且研究 \(a > 0, b \geq 0\)

0. 杂论:\((a + kb) \bmod b = a \bmod b\)

1. 分配率:模运算对加、减、乘具有分配率

1.1 \((a + b) \bmod c = (a \bmod c + b \bmod c) \bmod c\)

1.2 \((a - b) \bmod c = (a \bmod c - b \bmod c) \bmod c\)

1.3 \((a \times b) \bmod c = [(a \bmod c) \times (b \bmod c)] \bmod c\)

1.4 \((a^b) \bmod c = (a \bmod c)^b \bmod c\)

2. 放缩性:

2.1 如果 \(a \bmod b = c, d \neq 0\),则有 \((a \times d) \bmod (b \times d) = c \times d\)

2.2 如果 \(a \bmod b = c, d \neq 0\),则有 \(\frac a d \bmod \frac b d = \frac c d\)


证明:

0.1 \(a < b\)

\(x = a + kb\)

根据 \(\bmod\) 的定义,\(x \bmod b = a\)

所以 \((a + kb) \bmod b = a\)


0.2 \(a \geqslant b\)

\(∴(a + kb) \bmod b = [(a - \lfloor \frac a b \rfloor \times b) + (k + \lfloor \frac a b \rfloor)b] \bmod b\)

由定义得:\(a \bmod b = a - \lfloor \frac a b \rfloor \times b\)

\(∴[(a - \lfloor \frac a b \rfloor \times b) + (k + \lfloor \frac a b \rfloor)b] \bmod b = [a \bmod b + (k + \lfloor \frac a b \rfloor)b] \bmod b\)

\(∵ a \bmod b < b\)

然后用 0.1 解决即可。


1.1\(a = c * q_a + r_a, b = c * q_b + r_b (q_a, q_b, r_a, r_b \in \mathbb Z, r_a,rb < c)\)

\(∴ (a + b) \bmod c = (c * q_a + r_a + c * q_b + r_b) \bmod c\)

\((a + b) \bmod c = [r_a + r_b + (q_a + q_b)c] \bmod c\)

0 得:\((a + b) \bmod c = (r_a + r_b) \bmod c)\)

\(∵r_a = a \bmod c, r_b = b \bmod c\)

\(∴ (a + b) \bmod c = (a \bmod c + b \bmod c) \bmod c\)


1.2\(a = c * q_a + r_a, b = c * q_b + r_b (q_a, q_b, r_a, r_b \in \mathbb Z, r_a,rb < c)\)

\(∴ (a - b) \bmod c = (c * q_a + r_a - c * q_b - r_b) \bmod c\)

\((a - b) \bmod c = [r_a - r_b + (q_a - q_b)c] \bmod c\)

0 得:\((a - b) \bmod c = (r_a - r_b) \bmod c)\)

\(∵r_a = a \bmod c, r_b = b \bmod c\)

\(∴ (a - b) \bmod c = (a \bmod c - b \bmod c) \bmod c\)


1.3\(a = c * q_a + r_a, b = c * q_b + r_b (q_a, q_b, r_a, r_b \in \mathbb Z, r_a,rb < c)\)

\(∴ (a * b) \bmod c = [(c * q_a + r_a) * (c * q_b + r_b)] \bmod c\)

\(∴ (a * b) \bmod c = (q_aq_bc^2 + q_ar_bc + q_br_ac + r_ar_b) \bmod c\)

即 $ (a * b) \bmod c = [r_a * r_b + c(q_aq_bc + q_ar_b + q_br_a)] \bmod c$

0 得:\((a * b) \bmod c = (r_a * r_b) \bmod c)\)

\(∵r_a = a \bmod c, r_b = b \bmod c\)

\(∴ (a \times b) \bmod c = [(a \bmod c) \times (b \bmod c)] \bmod c\)


1.4

1.3 得:

\((a^b) \bmod c = (a \times a^{b - 1}) \bmod c = [(a \bmod c) \times (a ^ {b - 1} \bmod c)] \bmod c\)

\((a^b) \bmod c = [(a \bmod c) \times (a \bmod c) \times (a ^ {b - 2} \bmod c)] \bmod c\)

\(...\)

\((a^b) \bmod c = [(a \bmod c) \times (a \bmod c) ...\times (a \bmod c)] \bmod c\)


2.1\(a = b \times q_a + c\)

$∴ (a \times d) \bmod (b \times d) = (cd + bdq_a) \bmod bd $

\(∵ a \bmod b = c\)

\(∴ c < b\)

\(∵ d > 0\)

\(∴ cd < bd\)

\(∴\)0.1 得:\((a \times d) \bmod (b \times d) = (cd + bdq_a) \bmod bd = cd\)


2.1\(a = b \times q_a + c\)

$∴ \frac a d \bmod \frac b d = (\frac c d + \frac {bq_a} d) \bmod \frac b d $

\(∵ a \bmod b = c\)

\(∴ c < b\)

\(∵ d > 0\)

\(∴ \frac c d < \frac b d\)

\(∴\)0.1 得:\(\frac a d \bmod \frac b d = (\frac c d + \frac {bq_a} d) \bmod \frac b d = \frac c d\)


0x03 同余

概念:\(m\) 为给定正整数,若满足 \(m \mid (a - b), a, b \in \mathbb Z\),则称 \(a\)\(b\)\(m\) 同余。记作 \(a \equiv b \pmod m\)


性质

0. 一些基本性质:

0.1 反身性:\(a \equiv a \pmod m\)

0.2 对称性:\(a \equiv b \pmod m\),则 \(b \equiv a \pmod m\)

0.3 传递性:\(a \equiv b \pmod m\),则 \(b \equiv c \pmod m\),则 \(a \equiv c \pmod m\)

1. 同加性:若 \(a \equiv b \pmod m\),则 \(a + c \equiv b + c \pmod m\)

2. 同减性:若 \(a \equiv b \pmod m\),则 \(a - c \equiv b - c \pmod m\)

3. 同乘性:若 \(a \equiv b \pmod m\),则 \(a \times c \equiv b \times c \pmod m\)

4. 同除性:若 \(a \equiv b \pmod m, c \mid a, c \mid b, (c, m) = 1\),则 \(\frac a c \equiv \frac b c \pmod m\)

5. 同幂性:若 \(a \equiv b \pmod m\),则 \(a^c \equiv b^c \pmod m\)

6.\(a \bmod p = x, a \bmod q = x, (p, q) = 1\),则 \(a \bmod (p \times q) = x\)


1. 由题:\(m \mid (a - b)\)

\(∴ m \mid [(a + c) - (b + c)]\)

\(∴ a + c \equiv b + c \pmod m\)


2. 由题:\(m \mid (a - b)\)

\(∴ m \mid [(a - c) - (b - c)]\)

\(∴ a - c \equiv b - c \pmod m\)


3. 由题:\(m \mid (a - b)\)

\(∴ m \mid [ac - bc]\)

\(∴ a \times c \equiv b \times c \pmod m\)


4.\(a = k_ac, b = k_bc\)

\(∴ p \mid (k_a - k_b)c\)

\(∵ (c, p) = 1\)

\(∴ p \mid (k_a - k_b)\)

\(∴ pc \mid (k_ac - k_bc)\)

\(pc \mid (a - b)\)

\(∴ p \mid \frac {a - b} c\)

\(p \mid (\frac a c - \frac b c)\)

\(∴\frac a c \equiv \frac b c \pmod m\)


5. 由题:\(m \mid (a - b)\)

\(∴ a^c - b^c = (a - b)(a^{c - 1} + a^{c - 2}b + ... + ab^{c - 2} + b^{c - 1})\)

\(∵a, b \in \mathbb Z\)

\(∴ (a^{c - 1} + a^{c - 2}b + ... + ab^{c - 2} + b^{c - 1}) \in \mathbb Z\)

\(∴ (a - b) \mid (a^c - b^c)\)

\(∴ m \mid (a^c - b^c)\)

\(a^c \equiv b^c \pmod m\)


6. \(∵ a \bmod p = x, a \bmod q = x\)

\(∴p \mid (a - x), q \mid (a - x)\)

\(∴ a - x = pk_p, a - x = qk_q(k_p, k_q \in \mathbb Z)\)

\(pk_p = qk_q\)

\(∵(p, q) = 1\)

\(∴ k_p = kq(k \in \mathbb Z)\)

\(∴ a - x = pqk\)

\(pq \mid a - x\)

\(a \bmod (p \times q) = x\)

posted @ 2020-10-24 12:05  STrAduts  阅读(297)  评论(0编辑  收藏  举报