摘要:
# 代码11-1 Python访问数据库 import os import pandas as pd # 修改工作路径到指定文件夹 os.chdir("F:\大数据分析\mysql") # 第一种连接方式 #from sqlalchemy import create_engine #engine = 阅读全文
摘要:
import pandas as pd import matplotlib.pyplot as plt inputfile ='F:\大数据分析\\original_data.xls' #'./demo/data/original_data.xls' # 输入的数据文件 data = pd.read 阅读全文
摘要:
代码一:查看数据特征: import pandas as pd inputfile = 'F:\大数据分析\\GoodsOrder.csv' data = pd.read_csv(inputfile,encoding='gbk') group = data.groupby(['Goods']).co 阅读全文
摘要:
一、读取数据 代码: import pandas as pddatafile = 'F:\大数据分析\\air_data.csv'resultfile = 'F:\大数据分析\\explore.csv' data = pd.read_csv(datafile,encoding = 'utf-8') 阅读全文
摘要:
一、描述性统计分析和相关系数矩阵 代码: import numpy as npimport pandas as pdinputfile = 'F:\大数据分析\\data.csv'data = pd.read_csv(inputfile)# print(data) description = [da 阅读全文
摘要:
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus']=Falseplt.figure() p=data.boxplot(return_ty 阅读全文
摘要:
# TensorFlow and tf.kerasimport tensorflow as tffrom tensorflow import keras # Helper librariesimport numpy as npimport matplotlib.pyplot as plt print 阅读全文
摘要:
TensorFlow 实现线性回归 在Python环境,使用import导入TensorFlow模块,别名为tf 设置训练参数,learning_rate=0.01,training_epochs=1000,display_step=50。 创建训练数据 .构造计算图,使用变量Variable构造变 阅读全文
摘要:
import mathimport numpy as npimport pandas as pdfrom pandas import DataFramey =[0.14 ,0.64 ,0.28 ,0.33 ,0.12 ,0.03 ,0.02 ,0.11 ,0.08 ]x1 =[0.29 ,0.50 阅读全文
摘要:
import pymysqlimport wxclass MyFrame(wx.Frame): def __init__(self,parent,id): wx.Frame.__init__(self,parent,id,'班级信息收集',size=(400,300)) #创建面板 panel = 阅读全文