DTS
一、DTS的加载过程
如果要使用Device Tree,首先用户要了解自己的硬件配置和系统运行参数,并把这些信息组织成Device Tree source file。通过DTC(Device Tree Compiler),可以将这些适合人类阅读的Device Tree source file变成适合机器处理的Device Tree binary file(device tree blob)。
在系统启动时,boot program(例如:firmware、bootloader)可以将保存在flash中的DTB copy到内存(当然也可以通过其他方式,例如通过bootloader的交互式命令加载DTB,或者firmware可以探测到device的信息,组织成DTB保存在内存中),并把DTB的起始地址传递给client program(例如OS kernel,bootloader或者其他特殊功能的程序)。
对于计算机系统(computer system),一般是firmware->bootloader->OS,对于嵌入式系统,一般是bootloader->OS。
二、DTS的描述信息
Device Tree由一系列被命名的结点(node)和属性(property)组成,而结点本身可包含子结点。
所谓属性,其实就是成对出现的name和value。
在Device Tree中,可描述的信息包括(原先这些信息大多被hard code写到kernel中):
-
CPU的数量和类别
-
内存基地址和大小
-
总线和桥
-
外设连接
-
中断控制器和中断使用情况
-
GPIO控制器和GPIO使用情况
-
Clock控制器和Clock使用情况
它基本上就是画一棵电路板上CPU、总线、设备组成的树,Bootloader会将这棵树传递给内核,然后内核可以识别这棵树,并根据它展开出Linux内核中的platform_device、i2c_client、spi_device等设备,而这些设备用到的内存、IRQ等资源,也被传递给了内核,内核会将这些资源绑定给展开的相应的设备。
Device Tree是否要描述系统中的所有硬件信息?答案是否定的。基本上,不需要描述那些可以动态探测到的设备,例如USB device。不过对于SOC上的usb hostcontroller,它无法被动态识别,需要在device tree中描述。
同理,在computersystem中,PCI device可以被动态探测到,不需要在device tree中描述,但是PCI bridge如果不能被探测,那么就需要描述它。
.dts文件是一种ASCII 文本格式的Device Tree描述,此文本格式非常人性化,适合人类的阅读习惯。
基本上,在ARM Linux中,一个.dts文件对应一个ARM的machine,一般放置在内核的arch/arm/boot/dts/目录。
由于一个SoC可能对应多个machine(一个SoC可以对应多个产品和电路板),势必这些.dts文件需包含许多共同的部分,Linux内核为了简化,把SoC公用的部分或者多个machine共同的部分一般提炼为.dtsi,类似于C语言的头文件。其他的machine对应的.dts可以include这个.dtsi。
譬如,对于RK3288而言, rk3288.dtsi就被rk3288-chrome.dts所引用,rk3288-chrome.dts有如下一行:#include“rk3288.dtsi”。
再如rtd1195, 在 rtd-119x-nas.dts中就包含了/include/ "rtd-119x.dtsi"。
当然,和C语言的头文件类似,.dtsi也可以include其他的.dtsi,譬如几乎所有的ARM SoC的.dtsi都引用了skeleton.dtsi,即#include"skeleton.dtsi“
或者 /include/ "skeleton.dtsi"
正常情况下所有的dts文件以及dtsi文件都含有一个根节点”/”, 这样include之后就会有很多个根节点。按理说 device tree既然是一个树,那么其只能有一个根节点,所有其他的节点都是派生于根节点的child node。
其实Device Tree Compiler会对DTS的node进行合并,最终生成的DTB中只有一个 root node。
device tree的基本单元是node。这些node被组织成树状结构,除了root node,每个node都只有一个parent。一个device tree文件中只能有一个root node。每个node中包含了若干的property/value来描述该node的一些特性。
每个node用节点名字(node name)标识,节点名字的格式是node-name@unit-address。
如果该node没有reg属性(后面会描述这个property),那么该节点名字中必须不能包括@和unit-address。unit-address的具体格式是和设备挂在那个bus上相关。例如对于cpu,其unit-address就是从0开始编址,以此加一。
而具体的设备,例如以太网控制器,其unit-address就是寄存器地址。root node的node name是确定的,必须是“/”。
在一个树状结构的device tree中,如何引用一个node呢?要想唯一指定一个node必须使用full path,例如/node-name-1/node-name-2/node-name-N。
三、DTS的组成结构
{ node1 { a-string-property = "A string"; a-string-list-property = "first string", "second string"; a-byte-data-property = [0x01 0x23 0x34 0x56]; child-node1 { first-child-property; second-child-property = <1>; a-string-property = "Hello, world"; }; child-node2 { }; }; node2 { an-empty-property; a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */ child-node1 { }; }; };
上述.dts文件并没有什么真实的用途,但它基本表示了一个Device Tree源文件的结构:
1、1个root结点"/";
2、root结点下面含一系列子结点,本例中为"node1"和 "node2";
3、结点"node1"下又含有一系列子结点,本例中为"child-node1"和 "child-node2";
4、各结点都有一系列属性。这些属性可能为空,如"an-empty-property";可能为字符串,如"a-string-property";可能为字符串数组,如"a-string-list-property";可能为Cells(由u32整数组成),如"second-child-property",可能为二进制数,如"a-byte-data-property"。
下面以一个最简单的machine为例来看如何写一个.dts文件。假设此machine的配置如下:
1、1个双核ARM Cortex-A9 32位处理器;
2、ARM的local
bus上的内存映射区域分布了2个串口(分别位于0x101F1000 和
0x101F2000)、GPIO控制器(位于0x101F3000)、SPI控制器(位于0x10115000)、中断控制器(位于0x10140000)和一个external
bus桥;
3、External bus桥上又连接了SMC SMC91111 Ethernet(位于0x10100000)、I2C控制器(位于0x10160000)、64MB NOR Flash(位于0x30000000);
4、External bus桥上连接的I2C控制器所对应的I2C总线上又连接了Maxim DS1338实时钟(I2C地址为0x58)。
其对应的.dts文件为:
{ compatible = "acme,coyotes-revenge"; #address-cells = <1>; #size-cells = <1>; interrupt-parent = <&intc>; cpus { #address-cells = <1>; #size-cells = <0>; cpu@0 { compatible = "arm,cortex-a9"; reg = <0>; }; cpu@1 { compatible = "arm,cortex-a9"; reg = <1>; }; }; serial@101f0000 { compatible = "arm,pl011"; reg = <0x101f0000 0x1000 >; interrupts = < 1 0 >; }; serial@101f2000 { compatible = "arm,pl011"; reg = <0x101f2000 0x1000 >; interrupts = < 2 0 >; }; gpio@101f3000 { compatible = "arm,pl061"; reg = <0x101f3000 0x1000 0x101f4000 0x0010>; interrupts = < 3 0 >; }; intc: interrupt-controller@10140000 { compatible = "arm,pl190"; reg = <0x10140000 0x1000 >; interrupt-controller; #interrupt-cells = <2>; }; spi@10115000 { compatible = "arm,pl022"; reg = <0x10115000 0x1000 >; interrupts = < 4 0 >; }; external-bus { #address-cells = <2> #size-cells = <1>; ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet 1 0 0x10160000 0x10000 // Chipselect 2, i2c controller 2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash ethernet@0,0 { compatible = "smc,smc91c111"; reg = <0 0 0x1000>; interrupts = < 5 2 >; }; i2c@1,0 { compatible = "acme,a1234-i2c-bus"; #address-cells = <1>; #size-cells = <0>; reg = <1 0 0x1000>; rtc@58 { compatible = "maxim,ds1338"; reg = <58>; interrupts = < 7 3 >; }; }; flash@2,0 { compatible = "samsung,k8f1315ebm", "cfi-flash"; reg = <2 0 0x4000000>; }; }; };
上述.dts文件中, root结点"/"的compatible 属性compatible = "acme,coyotes-revenge";定义了系统的名称,它的组织形式为:<manufacturer>,<model>。
Linux内核透过root结点"/"的compatible 属性即可判断它启动的是什么machine。
在.dts文件的每个设备,都有一个compatible属性,compatible属性用于驱动和设备的绑定。compatible 属性是一个字符串的列表,列表中的第一个字符串表征了结点代表的确切设备,形式为"<manufacturer>,<model>",其后的字符串表征可兼容的其他设备。可以说前面的是特指,后面的则涵盖更广的范围。
如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash结点:
flash@0,00000000 { compatible = "arm,vexpress-flash", "cfi-flash"; reg = <0 0x00000000 0x04000000>, <1 0x00000000 0x04000000>; bank-width = <4>; };
compatible属性的第2个字符串"cfi-flash"明显比第1个字符串"arm,vexpress-flash"涵盖的范围更广。
接下来root结点"/"的cpus子结点下面又包含2个cpu子结点,描述了此machine上的2个CPU,并且二者的compatible 属性为"arm,cortex-a9"。
注意:cpus和cpus的2个cpu子结点的命名,它们遵循的组织形式为:<name>[@<unit-address>],<>中的内容是必选项,[]中的则为可选项。name是一个ASCII字符串,用于描述结点对应的设备类型,如3com
Ethernet适配器对应的结点name宜为ethernet,而不是3com509。
如果一个结点描述的设备有地址,则应该给出@unit-address。多个相同类型设备结点的name可以一样,只要unit-address不同即可,如本例中含有cpu@0、cpu@1以及serial@101f0000与serial@101f2000这样的同名结点。设备的unit-address地址也经常在其对应结点的reg属性中给出。
reg的组织形式为reg = <address1 length1 [address2 length2][address3 length3] ... >,其中的每一组addresslength表明了设备使用的一个地址范围。address为1个或多个32位的整型(即cell),而length则为cell的列表或者为空(若#size-cells = 0)。
address和length字段是可变长的,父结点的#address-cells和#size-cells分别决定了子结点的reg属性的address和length字段的长度。
在本例中,root结点的#address-cells = <1>;和#size-cells =<1>;决定了serial、gpio、spi等结点的address和length字段的长度分别为1。
cpus 结点的#address-cells= <1>,和#size-cells =<0>。决定了2个cpu子结点的address为1,而length为空,于是形成了2个cpu的reg =<0>, 和reg =<1>;
external-bus结点的#address-cells= <2>和#size-cells =<1>;决定了其下的ethernet、i2c、flash的reg字段形如reg = <0 00x1000>; reg = <1 00x1000>;和reg = <2 00x4000000>;
其中,address字段长度为0,开始的第一个cell(0、1、2)是对应的片选,第2个cell(0,0,0)是相对该片选的基地址,第3个cell(0x1000、0x1000、0x4000000)为length。
特别要留意的是i2c结点中定义的 #address-cells = <1>,和#size-cells =<0>; 又作用到了I2C总线上连接的RTC,它的address字段为0x58,是设备的I2C地址。
root结点的子结点描述的是CPU的视图,因此root子结点的address区域就直接位于CPU的memory区域。但是,经过总线桥后的address往往需要经过转换才能对应的CPU的memory映射。
external-bus的ranges属性定义了经过external-bus桥后的地址范围如何映射到CPU的memory区域。
ranges = <0 0 0x10100000 0x10000 // Chipselect 1, Ethernet
1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash
ranges是地址转换表,其中的每个项目是一个子地址、父地址以及在子地址空间的大小的映射。映射表中的子地址、父地址分别采用子地址空间的#address-cells和父地址空间的#address-cells大小。
对于本例而言,子地址空间的#address-cells为2,父地址空间的#address-cells值为1,因此0 0 0x10100000 0x10000的前2个cell为external-bus后片选0上偏移0,第3个cell表示external-bus后片选0上偏移0的地址空间被映射到CPU的0x10100000位置,第4个cell表示映射的大小为0x10000。ranges的后面2个项目的含义可以类推。
Device Tree中还可以中断连接信息,对于中断控制器而言,它提供如下属性:
interrupt-controller– 这个属性为空,中断控制器应该加上此属性表明自己的身份;
#interrupt-cells– 与#address-cells 和 #size-cells相似,它表明连接此中断控制器的设备的interrupts属性的cell大小。
在整个Device Tree中,与中断相关的属性还包括:
interrupt-parent– 设备结点透过它来指定它所依附的中断控制器的phandle,当结点没有指定interrupt-parent时,则从父级结点继承。
对于本例而言,root结点指定了interrupt-parent= <&intc>;其对应于intc: interrupt-controller@10140000,而root结点的子结点并未指定interrupt-parent,因此它们都继承了intc,即位于0x10140000的中断控制器。
interrupts – 用到了中断的设备结点透过它指定中断号、触发方法等,具体这个属性含有多少个cell,由它依附的中断控制器结点的#interrupt-cells属性决定。而具体每个cell又是什么含义,一般由驱动的实现决定,而且也会在Device Tree的binding文档中说明。
譬如,对于ARM GIC中断控制器而言,#interrupt-cells为3,它3个cell的具体含义kernel/Documentation/devicetree/bindings/arm/gic.txt就有如下文字说明:
PPI(Private peripheral interrupt) SPI(Shared peripheral interrupt)
一个设备还可能用到多个中断号。对于ARM GIC而言,若某设备使用了SPI的168、169号2个中断,而言都是高电平触发,则该设备结点的interrupts属性可定义为:interrupts =<0 168 4>, <0 169 4>;
四、dts引起BSP和driver的变更
没有使用dts之前的BSP和driver
使用dts之后的driver
针对上面的dts,注意以下几点:
(1)、rtk_gpio_ctl_mlk这个是node的名字,自己可以随便定义,当然最好是见名知意,可以通过驱动程序打印当前使用的设备树节点
printk(“now dts node name is %s\n",pdev->dev.of_node->name);
(2). compatible选项是用来和驱动程序中的of_match_table指针所指向的of_device_id结构里的compatible字段匹配的,只有dts里的compatible字段的名字和驱动程序中of_device_id里的compatible字段的名字一样,驱动程序才能进入probe函数。
(3)、对于gpios这个字段,首先&rtk_iso_gpio指明了这个gpio是连接到的是rtk_iso_gpio, 接着那个8是gpio number偏移量,它是以rtk_iso_gpiobase为基准的, 紧接着那个0说明目前配置的gpio number 是设置成输入input, 如果是1就是设置成输出output,最后一个字段1是指定这个gpio 默认为高电平,如果是0则是指定这个gpio默认为低电平。
(4)、如果驱动里面只是利用compatible字段进行匹配进入probe函数,那么gpios 可以不需要,但是如果驱动程序里面是采用设备树相关的方法进行操作获取gpio number, 那么gpios这个字段必须使用。 gpios这个字段是由of_get_gpio_flags函数默认指定的name。
获取gpio number的函数如下:
of_get_named_gpio_flags()
of_get_gpio_flags()
注册i2c_board_info,指定IRQ等板级信息。
形如:
static struct i2c_board_info __initdata afeb9260_i2c_devices[] = { { I2C_BOARD_INFO("tlv320aic23", 0x1a), }, { I2C_BOARD_INFO("fm3130", 0x68), }, { I2C_BOARD_INFO("24c64", 0x50), } };
之类的i2c_board_info代码,目前不再需要出现,现在只需要把tlv320aic23、fm3130、24c64这些设备结点填充作为相应的I2C controller结点的子结点即可,类似于前面的
i2c@1,0 { compatible = "acme,a1234-i2c-bus"; … rtc@58 { compatible = "maxim,ds1338"; reg = <58>; interrupts = < 7 3 >; }; };
Device Tree中的I2C client会透过I2C host驱动的probe()函数中调用of_i2c_register_devices(&i2c_dev->adapter); 然后被自动展开。
五、常见的DTS 函数
Linux内核中目前DTS相关的函数都是以of_前缀开头的,它们的实现位于内核源码的drivers/of下面
void __iomem*of_iomap(struct device_node *node, int index)
通过设备结点直接进行设备内存区间的 ioremap(),index是内存段的索引。若设备结点的reg属性有多段,可通过index标示要ioremap的是哪一段,只有1段的情况,index为0。
采用Device Tree后,大量的设备驱动通过of_iomap()进行映射,而不再通过传统的ioremap。
int of_get_named_gpio_flags(struct device_node *np,const char *propname,
int index, enum of_gpio_flags *flags)
static inline int of_get_gpio_flags(structdevice_node *np, int index,
enum of_gpio_flags *flags)
{
return of_get_named_gpio_flags(np, "gpios", index,flags);
}
从设备树中读取相关GPIO的配置编号和标志,返回值为 gpio number。
六、DTC (device tree compiler)
将.dts编译为.dtb的工具。DTC的源代码位于内核的scripts/dtc目录,在Linux内核使能了Device Tree的情况下,编译内核的时候主机工具dtc会被编译出来,对应scripts/dtc/Makefile中的“hostprogs-y := dtc”这一hostprogs编译target。
在Linux内核的arch/arm/boot/dts/Makefile中,描述了当某种SoC被选中后,哪些.dtb文件会被编译出来,如与VEXPRESS对应的.dtb包括:
-
dtb-$(CONFIG_ARCH_VEXPRESS) += vexpress-v2p-ca5s.dtb \
-
vexpress-v2p-ca9.dtb \
-
vexpress-v2p-ca15-tc1.dtb \
-
vexpress-v2p-ca15_a7.dtb \
-
xenvm-4.2.dtb
当我们在Linux内核下运行make dtbs时,若之前选择了ARCH_VEXPRESS,上述.dtb都会由对应的.dts编译出来。因为arch/arm/Makefile中含有一个dtbs编译target项目。当然也可以单独编译Device Tree文件。命令由读者自行去找。